The cell potential of Lemna paucicostata 6746 was measured between the vacuole and the external solution. The potential in the dark (-202 mV) could be depolarized with 0.1 mM dicyclohexyl carbodiimide (DCCD) or 1 mM arsenate to-81 mV. The hyperpolarization above the latter value is therefore attributed to an ATP-dependent process. The cell potential showed a significant dependence upon the pH of the external solution. The change in the potential induced by a jump in pH between two certain values, was reversible and independent of the mode of performing the pH change (stepwise or at once). The DCCD-or arsenate-depolarized potential did not respond to external pH changes. A 0.1 mM ammonium chloride solution depolarized the cell potential reversibly to-83 mV. This potential-change could be greatly reduced by simultaneous addition of 5 mM Na isobutyrate. The pH sensitivity of the cell potential is ascribed to changes in the rate of proton extrusion upon altering the proton gradient across the plasmalemma. The effects of ammonium and isobutyrate are interpreted as being the consequence of pH shifts at the inner face of the plasmalemma, caused by the permeation of the undissociated form of the weak acid or base. A critical discussion of an alternative interpretation for the ammonium effect is presented.
Light-stimulated transmembrane potential changes have been measured continuously after implantation of microelectrodes into subepidermal cells of the short-day plant Lemna paucicostata 6746. Irradiation for 5 min with white or red light caused a transient hyperpolarization. These potential changes could be suppressed with 10(-6) M DCMU. Irradiation of DCMU-inhibited plants with far-red light for 5 min hyperpolarized the membrane potential, which thereafter was not changed by further far-red application. Consecutive red light irradiation for 5 min depolarized the membrane potential. The red/far-red reversibility of the potential changes (which could be repeated several times with a single plant) suggests the participation of phytochrome.
Respiration rate, ATP content and membrane potential of Lemna have been measured as a function of the concentration of dissolved oxygen. Kinetic analysis showed that within the range from 1 μM to 20 μM O2, the respiration rate of isolated mitochondria and intact plants was a hyperbolic function of the oxygen concentration. The apparent Michaelis constant (K m ) for the oxygen of respiration of intact plants (1.15±0.08 μM) is close to that for isolated mitochondria (1.07±0.06 μM), so that diffusion of oxygen within the tissue was obviously not rate-limiting under the applied experimental conditions. The ATP level decreased in parallel with the respiration rate when the oxygen concentration was reduced. In contrast, the hyperpolarization of the membrane potential above the diffusion potential had already decreased at oxygen concentrations where the respiration rate and ATP level remained practically unchanged and was completely abolished at oxygen concentrations above the K m of respiration. This result is discussed according to the current models for electrogenic pumps. It is concluded that ATP cannot be the fuel for the electrogenic process under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.