Purpose Non-melanoma skin cancers of the face are at high-risk for local recurrence and metastatic spread. While surgical interventions such as Mohs microsurgery are considered the standard of care, this modality has the potential for high rates of toxicity in sensitive areas of the face. Catheter flap high-dose-rate (HDR) brachytherapy has shown promising results, with high rates of local control and acceptable cosmetic outcomes. Material and methods Patients with non-melanoma skin cancers (NMSC) located on the face were treated with 40 Gy in 8 fractions, given twice weekly via catheter flap HDR brachytherapy. Clinical target volume (CTV) included the visible tumor plus a margin of 5 mm in all directions, with no additional planning target volume (PTV) margin. Results Fifty patients with 53 lesions on the face were included, with a median follow-up of 15 months. All were considered high-risk based on NCCN guidelines. Median tumor size and thickness were 18 mm and 5 mm, respectively. Median PTV volume and D 90 were 1.7 cc and 92%, respectively. Estimated rate of local control at twelve months was 92%. Three patients (5%) experienced acute grade 2 toxicity. Two patients (4%) continued to suffer from chronic grade 1 skin toxicity at 12 months post-radiotherapy (RT), with an additional two patients (4%) experiencing chronic grade 2 skin toxicity. Forty-nine lesions (92%) were found to have a good or excellent cosmetic outcome with complete tumor remission. Conclusions CT-based flap applicator brachytherapy is a valid treatment option for patients with NMSC of the face. This modality offers high rates of local control with acceptable cosmetic outcomes and low rates of toxicity.
Abstruct-A small plastic scintillator bonded to an optical fiber has several characteristics that make it promising as a brachytherapy dosimeter. In these dosimeters, scintillation light represents signal, whereas Cerenkov and luminescence light from the optical fiber stem is noise that must be subtracted. The dosimeter accuracy can be improved by optically filtering part of the fiber stem light. Spectral measurements were performed to guide the choice of scintillator, fiber, and filter. Spectral signatures and total luminescence of three scintillators and five different silica optical fibers, excited by a 8 Ci I9'Ir source, were measured. The total radiation-induced light from the various optical fibers differed by up to a factor of 5.6. The percentage of fiber-produced light due to luminescence varied between 15 and 79%. A fiber with weak emission was used in the dosimeter with BC408S, a scintillator with minimum emission wavelength of 400 nm. A 400-nm cutoff UV filter gave a factor of two increase in signal-to-noise. The dosimeter response was linear for dose rates varying by at least three orders of magnitude, representing source-to-probe distances of 0.2-10 cm. Measurement errors of the dosimeter compare favorably with other brachytherapy dosimeters.
Electron-beam characteristics of a Philips SL25 linear accelerator have been studied. Central-axis percentage depth doses, cross-beam profiles and beam output factors of 6-, 10-, and 20-MeV beams, selected from the available energy range of 4 to 22 MeV, are reported in this paper. The main thrust of this work is to determine the systematic variation of beam characteristics, especially the output factor, with standard cone sizes and cerrobend beam-shaping cutouts down to a field size of 2 X 2 cm Output factors for the standard cones (open field) are energy dependent in a complex manner, increasing with the cone size for the 6-MeV beam whereas decreasing for 10- and 20-MeV beams. The output factor falls below unity at lower energies (6 and 10 MeV) for fields with at least one side smaller than 6 cm, and stays nearly constant for the 20-MeV beam. Measured output factors of small fields are least squares fitted by a second-order polynomial function. Output factors for small rectangular fields have been derived from the one-dimensional and square-root formulas, and the equivalent-square method. Only the one-dimensional formula predicts the measured output factors of highly elongated fields to within +/- 1% experimental uncertainties. Different cones with the same size electron cutout show a varied dose response, primarily due to variation in scattered electron contamination from the cones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.