[1] Bacteria cultivated from aerosol and cloud water samples collected at a remote Austrian mountain site under wintry conditions were tested for their ability to act as cloud condensation nuclei (CCN). The experiment was carried out with a cloud condensation nuclei counter (CCNC) operating on the principle of a static thermal diffusion chamber. Average concentrations of cultivable airborne bacteria amounted to 8 colony forming units (CFU) m À3 in aerosol samples and to 79 CFU mL À1 in cloud water. The set of tested bacteria comprised Gram positive and Gram negative but no known ice nucleating species. At supersaturations between 0.07 and 0.11% all types of bacteria were activated as CCN. As the sizes of the bacteria were smaller than the Kelvin diameters for the respective supersaturations, the physico-chemical properties of their outer cell walls must have enhanced their CCN activity.
Hygroscopic properties of combustion particles were measured online with a Hygroscopicity Tandem Differential Mobility Analyzer (H‐TDMA) during PartEmis jet engine combustor experiments. The combustor was operated at old and modern cruise conditions with fuel sulfur contents (FSC) of 50, 410 and 1270 μg g−1, and hygroscopic growth factors (HGF) of particles with different dry diameters were investigated at relative humidities RH ≤ 95%. HGFs increased strongly with increasing FSC (HGF[95% RH, 50 nm, modern cruise] = 1.01 and 1.16 for low and high FSC, respectively), and decreased with increasing particle size at fixed FSC, whereas no significant difference was detected between old and modern cruise. HGFs agreed well with a two‐parameter theoretical model which provided an estimate of the sulfuric acid content of dry particles, indicating a nearly linear dependence on FSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.