ABSTRACT:The literature concerning the adsorption and desorption of environmental impurities from adsorbents by means of liquid, subcritical and supercritical carbon dioxide and the author's work on the subject have been reviewed. The influence of the adsorption and desorption temperature, the pressure and the density of the extraction solvent, the solubility of the adsorbate in the extraction solvent, the activation energy for adsorbate desorption and the particle size of the adsorbent on the adsorbate desorption efficiency by this method were discussed.
The most correct analysis of the compositions of diverse analytes mixtures is significant for analytical studies in different fields; however, many prevalent analytes cannot be identified employing traditional partition gas chromatographic methods. Thus, the increasing requirements on analytes of isomeric compounds and the problems encountered in their separation demand a study of more diverse analytical systems which are characterised by higher selectivity. Therefore, the selectivity and polarities of various liquid crystals (rod-like, banana-shape, biforked, oxygen, sulphur, nitrogen, and metal containing molecules, Schiff-base, and polymeric dendrimers) employed as liquid crystalline stationary phases (LCSPs) have been discussed from both points of views, namely, their analytical applications and thermodynamic characteristics of infinitely diluted probes with different acceptor–donor properties. Extreme particular effort has been paid to the different interdependencies between the bound up chemical structures of liquid crystal molecules with their different acceptor–donor properties and the connected resolution capabilities in the interpretation of the probe—LCSP systems, on the basis of the and dependencies, with regard to the LCSP compositions, which have been controlled by the counterbalancing of the enthalpy and entropy factors. The properties of binary systems composed of liquid crystalline poly(propyleneimine) dendrimers—rod-like molecules of liquid crystals and effects of the dendrimer structure, the chemical nature, and molecular size of the non-mesogens on the ability to dissolve in the liquid crystalline phases, have been interpreted. Practical applications of metallomesogenes and chiral stationary phases for analytical separation of different organic substances have also been taken into consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.