One possible consequence of a change in climate over the past several decades is an increase in wave heights, potentially threatening coastal areas as well as the marine industry. But the difficulties in observing wave heights exacerbates a general problem of climate-change detection: inhomogeneities in long-term observational records owing to changes in the instruments or techniques used, which may cause artificial trends. Ground movements with periods of 4-16 seconds, known as microseisms, are associated with ocean waves and coastal surf, and have been recorded continuously since the early days of seismology. Here we use such a 40-year record of wintertime microseisms from Hamburg, Germany, to reconstruct the wave climate in the northeast Atlantic Ocean. For the period 1954-77, we detect an average of seven days per month with strong microseismic activity, without a significant trend. This number increases significantly in the second half of the record, reaching approximately 14 days of strong microseisms per month. The implied increase in northeast Atlantic wave height over the past 20 years parallels increased surface air temperatures and storminess in this region, suggesting a common forcing.
Microseism recordings from four European broadband stations and from three seismic arrays in Scotland, Norway, and Germany are compared with model wave data of the oceanic wave field in the North Atlantic and local ocean wave data from the Norwegian coast at 60°N, both measured during February–March 2000. Two approaches have been tested to locate generation areas of microseismic energy: a new amplitude correlation technique and beam backprojection from the three seismic arrays. Both techniques reveal that the main generation areas are located in specific regions off the coast of Southwest Norway and North Scotland. Seismic stations distant from these generation areas record a superposition of seismic energy from different source regions. Those close to a specific source region also show a high correlation with it. Both techniques give upper limits for the extent of the generation area of the strongest storm on 6/7 March at the southwest Norwegian coast of about 500 km. By using marine X‐band radar measurements of the two‐dimensional wave height spectrum, we estimate that the relative change of the extension of the generation area off the coast of southwest Norway during several storms is less than a factor of 3. This indicates that the size of the generation area is controlled by static features as coastline or bathymetry, and not by the extent of the storms. Microseism energy appears to be mainly controlled by the wave height in distinct and identifiable generation regions, so that the wave climate in these regions can be studied using historical records of microseisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.