Three numerical methods have been used to solve two problems described by advection-diffusion equations with specified initial and boundary conditions. The methods used are the third order upwind scheme [4], fourth order upwind scheme [4] and Non-Standard Finite Difference scheme (NSFD) [9]. We considered two test problems. The first test problem has steep boundary layers near x = 1 and this is challenging problem as many schemes are plagued by non-physical oscillation near steep boundaries [15]. Many methods suffer from computational noise when modelling the second test problem especially when the coefficient of diffusivity is very small for instance 0.01. We compute some errors, namely L 2 and L ∞ errors, dissipation and dispersion errors, total variation and the total mean square error for both problems and compare the computational time when the codes are run on a matlab platform. We then use the optimization technique devised by Appadu [1] to find the optimal value of the time step at a given value of the spatial step which minimizes the dispersion error and this is validated by some numerical experiments.
In this work, we used three finite difference schemes to solve 1D and 2D convective diffusion equations. The three methods are the Kowalic–Murty scheme, Lax–Wendroff scheme, and nonstandard finite difference (NSFD) scheme. We considered a total of four numerical experiments; in all of these cases, the initial conditions consisted of symmetrical profiles. We looked at cases when the advection velocity was much greater than the diffusion of the coefficient and cases when the coefficient of diffusion was much greater than the advection velocity. The dispersion analysis of the three methods was studied for one of the cases and the optimal value of the time step size k, minimizing the dispersion error at a given value of the spatial step size. From our findings, we conclude that Lax–Wendroff is the most efficient scheme for all four cases. We also show that the optimal value of k computed by minimizing the dispersion error at a given value of a spacial step size gave the lowest l2 and l∞ errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.