We flew specimens of eight different optical coating materials in low earth orbit as part of the Long Duration Exposure Facility manifest to determine their ability to withstand exposure to the residual atomic O and other environmental effects at those altitudes. We included samples of Al, Au, Ir, Os, Pt, Al + MgF(2), Al + SiO(x), and chemical-vapor-deposited SiC, representing reflective optical applications from the vacuum ultraviolet through the visible portions of the spectrum. We found that the majority of the materials suffered sufficient reflectance degradation to warrant careful consideration in the design of future space-flight instrumentation.
A technique for producing adherent and well-protected front surface Ag mirrors with an evaporated Al(2)O(3) + SiO(x) overcoat and an evaporated Al(2)O(3) underlayer is described. A thin Al(2)O(3) layer promotes adhesion between the Ag film and its substrate. The optimum thickness of each outer layer necessary to give good adhesion and protection to the Ag surface with minimal loss in reflectance due to ir absorption was found to be about 300 A for the Al(2)O(3) layer and between 1000 A and 2000 A for the SiO(x) film. Ag surfaces coated in this fashion retained a normal incidence reflectance in excess of 95% over the wavelength region from 450 nm to the far ir, even when exposed to harsh sulfide and humidity environments. Calculations demonstrate the advantage of using protected front surface Ag in comparison to more durable metal reflectors, such as Al or Rh, in terms of high reflectance and low visible region polarization. However, a very pronouncedrestrahlen reflectance and absorption effect in the thicker SiO(x) film is responsible for a calculated drop in reflectance from 98.5% to about 65% at lambda = 8.1 mum and 45 degrees incidence for the Ag + Al(2)O(3) + SiO(x) coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.