The Making of Amazonian Diversity
The biodiversity of the Amazon Basin is legendary, but the processes by which it has been generated have been debated. In the late 20th century the prevalent view was that the engine of diversity was repeated contraction and expansion of forest refugia during the past 3 million years or so.
Hoorn
et al.
(p.
927
) analyze findings from a diverse range of disciplines, including molecular phylogeny, ecology, sedimentology, structural geology, and palaeontology, to offer an overview of the entire history of this region during the Cenozoic era (66 million years ago). The uplift of the Andes was a pivotal event in the evolution of Amazonian landscapes because it continually altered river drainage patterns, which in turn put a variety of pressures on organisms to adapt to changing conditions in a multiplicity of ways. Hence, the diversity of the modern biota of the Amazon has more ancient origins than previously thought.
Mountains are key features of the Earth's surface and host a substantial proportion of the world's species. However, the links between the evolution and distribution of biodiversity and the formation of mountains remain poorly understood. Here, we integrate multiple datasets to assess the relationships between species richness in mountains, geology and climate at global and regional scales. Specifically, we analyse how erosion, relief, soil and climate relate to the geographical distribution of terrestrial tetrapods, which include amphibians, birds and mammals. We find that centres of species richness correlate with areas of high temperatures, annual rainfall and topographic relief, supporting previous studies. We unveil additional links between mountain-building processes and biodiversity: species richness correlates with erosion rates and heterogeneity of soil types, with a varying response across continents. These additional links are prominent but under-explored, and probably relate to the interplay between surface uplift, climate change and atmospheric circulation through time. They are also influenced by the location and orientation of mountain ranges in relation to air circulation patterns, and how species diversification, dispersal and refugia respond to climate change. A better understanding of biosphere-lithosphere interactions is needed to understand the patterns and evolution of mountain biodiversity across space and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.