A fast method for the generation of permanent hydrophilic capillary coatings for capillary electrophoresis (CE) is presented. Such interior coating is effected by treating the surface to be coated with a solution of glutaraldehyde as cross-linking agent followed by a solution of poly(vinyl alcohol) (PVA), which results in an immobilization of the polymer on the capillary surface. Applied for capillary zone electrophoresis (CZE) such capillaries coated with cross-linked PVA exhibit excellent separation performance of adsorptive analytes like basic proteins due to the reduction of analyte-wall interactions. The long-term stability of cross-linked PVA coatings could be proved in very long series of CZE separations. More than 1000 repetitive CE separations of basic proteins were performed with stable absolute migration times relative standard deviation (RSD > 1.2%) and without loss of separation efficiency. Cross-linked PVA coatings exhibit a suppressed electroosmotic flow and excellent stability over a wide pH range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.