Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people’s daily activities including transportation types and duration by taking advantage of individual’s smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.
Automatic detection of fall events is vital to providing fast medical assistance to the causality, particularly when the injury causes loss of consciousness. Optimization of the energy consumption of mobile applications, especially those which run 24/7 in the background, is essential for longer use of smartphones. In order to improve energy-efficiency without compromising on the fall detection performance, we propose a novel 3-tier architecture that combines simple thresholding methods with machine learning algorithms. The proposed method is implemented on a mobile application, called uSurvive, for Android smartphones. It runs as a background service and monitors the activities of a person in daily life and automatically sends a notification to the appropriate authorities and/or user defined contacts when it detects a fall. The performance of the proposed method was evaluated in terms of fall detection performance and energy consumption. Real life performance tests conducted on two different models of smartphone demonstrate that our 3-tier architecture with feature reduction could save up to 62% of energy compared to machine learning only solutions. In addition to this energy saving, the hybrid method has a 93% of accuracy, which is superior to thresholding methods and better than machine learning only solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.