Recent rapid progress in efficiencies for solar water splitting by photoelectrochemical devices has enhanced its prospects to enable storable renewable energy. Efficient solar fuel generators all use tandem photoelectrode structures, and advanced integrated devices incorporate corrosion protection layers as well as heterogeneous catalysts. Realization of near thermodynamic limiting performance requires tailoring the energy band structure of the photoelectrode and also the optical and electronic properties of the surface layers exposed to the electrolyte. Here, we report a monolithic device architecture that exhibits reduced surface reflectivity in conjunction with metallic Rh nanoparticle catalyst layers that minimize parasitic light absorption. Additionally, the anatase TiO 2 protection layer on the photocathode creates a favorable internal band alignment for hydrogen evolution. An initial solar-to-hydrogen efficiency of 19.3 % is obtained in acidic electrolyte and an efficiency of 18.5 % is achieved at neutral pH condition (under simulated sunlight). Main TextAdvances in the field of artificial photosynthesis 1 have led to the development of functional prototypes for photoelectrochemical water splitting 2 , featuring improved photoelectrode stability through the use of corrosion protection layers 3 and the realization of systems for unassisted water splitting 4-6 in integrated monolithic devices. The requirement for the device operating voltage under illumination to exceed the thermodynamic potential difference for water dissociation of 1.23 V imposes constraints on the energy bandgaps for the photoelectrode absorber layers and their combined operating potential in a series-connected tandem configuration. Several strategies have been followed. Early prototypes used single absorber
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.
Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community's focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance and catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.