BackgroundMajor depressive disorder (MDD) has been associated with adverse medical consequences, including cardiovascular disease and osteoporosis. Patients with MDD may be classified as having melancholic, atypical, or undifferentiated features. The goal of the present study was to assess whether these clinical subtypes of depression have different endocrine and metabolic features and consequently, varying medical outcomes.MethodsPremenopausal women, ages 21 to 45 years, with MDD (N = 89) and healthy controls (N = 44) were recruited for a prospective study of bone turnover. Women with MDD were classified as having melancholic (N = 51), atypical (N = 16), or undifferentiated (N = 22) features. Outcome measures included: metabolic parameters, body composition, bone mineral density (BMD), and 24 hourly sampling of plasma adrenocorticotropin (ACTH), cortisol, and leptin.ResultsCompared with control subjects, women with undifferentiated and atypical features of MDD exhibited greater BMI, waist/hip ratio, and whole body and abdominal fat mass. Women with undifferentiated MDD characteristics also had higher lipid and fasting glucose levels in addition to a greater prevalence of low BMD at the femoral neck compared to controls. Elevated ACTH levels were demonstrated in women with atypical features of depression, whereas higher mean 24-hour leptin levels were observed in the melancholic subgroup.ConclusionsPre-menopausal women with various features of MDD exhibit metabolic, endocrine, and BMD features that may be associated with different health consequences.Trial RegistrationClinicalTrials.gov NCT00006180
Evidence has accumulated that the regulation of male sexual behavior by dopamine might not be the same in Japanese quail (and perhaps all birds) as it is in mammals. For example, the non-selective dopamine receptor agonist, apomorphine (APO), facilitates male sexual behavior in rats but inhibits it in quail. Although the general organization of the dopamine system is similar in birds and mammals, it is possible that the relative distribution and/or density of binding sites are different. We therefore compared the relative densities of D1-like and D2-like receptor subtypes in Japanese quail and rats, with the use of in vitro quantitative receptor autoradiography. Brain sections from 8 male rats and 8 male quail were labeled with [3H]SCH-23390 and [3H]Spiperone. In general we found a systematic species difference in the relative density of D1- vs. D2-like receptors such that the D2/D1 ratio is higher in quail than in rats in areas, known to be important target sites for dopamine action such as striatal regions or the preoptic area, which is also associated with activation of sexual behavior. This difference might explain the variation in the behavioral effectiveness of APO in rats as compared to quail; with a higher relative density of D2-like receptors in quail, a similar dose of APO would be more likely to activate inhibitory processes in quail than in rats.
Psychostimulant addicts often take high doses of drugs, and high doses of psychostimulants such as methamphetamine (METH) are neurotoxic to striatal dopamine (DA) terminals. Yet, the effects of high doses of METH on drug-seeking and drug-taking behavior have not been examined. In the present study, we found that single high doses of METH in rats (10–20 mg/kg) dose-dependently increased cocaine self-administration under fixed-ratio 2 (FR2) reinforcement conditions, while higher doses (40 mg/kg×1 or 10 mg/kg/2 h×4) caused high mortality among rats maintained on daily cocaine self-administration. The increased cocaine self-administration appeared to be a compensatory response to reduced cocaine reward after METH, because the same doses of METH caused a dose-dependent reduction both in “breakpoint” levels for cocaine self-administration under progressive-ratio reinforcement and in nucleus accumbens DA response to acute cocaine. Further, METH (10–20 mg/kg) produced large DA release (4000%–6000% over baseline), followed by a significant reduction in striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) contents, but without significant changes in striatal DA transporter levels. These findings suggest that the present high doses of METH caused striatal DA depletion or hypofunction without severe damage in DA terminals, which may contribute to the increased cocaine-taking behavior observed in the present study. Provided that the present doses of METH may mimic METH overdose incidents in humans, the present findings suggest that METH-induced DA depletion or neurotoxicity may lead to an increase in subsequent drug-taking and drug-seeking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.