Since the patterns of residential buildings in the urban area are small-sized and dispersed, this study proposes a high-resolution flood loss and risk assessment model to analyze the direct loss and risk impacts caused by floods. The flood inundation simulation with a fine digital elevation model (DEM) provides detailed estimations of flood-inundated areas and their corresponding inundation depths during the 2016 Typhoon Megi and 2017 Typhoon Haitang. The flood loss assessment identifies the impacts of both events on residential areas. The depth-damage table from surveys in the impacted area was applied. Results indicated that the flood simulation with the depth-damage table is an effective way to assess the direct loss of a flood disaster. The study also showed the effects of spatial resolution on the residential loss. The results indicated that the low-resolution model easily caused the estimated error of loss in dispersed residential areas when compared with the high-resolution model. The analytic hierarchy process (AHP), as a multi-criteria decision-making method, was used to identify the weight factor for each vulnerability factor. The flood-vulnerable area was mapped using natural and social vulnerability factors, such as high-resolution DEM, distance to river, distance to fire station, and population density. Eventually, the flood risk map was derived from the vulnerability and flood hazard maps to present the risk level of the flood disaster in the residential areas.
<p>The movement of a debris flow is channelized by the mountain topography. It slows down and begins to deposit, forming the so-called debris-flow fan, when the slope is gentle. Since the flow body is composed of solid grains with interstitial fluid, the solid fraction may vary and plays a crucial role in the deposition process. In the present study, an entrainment-deposit law together with the two-phase model for grain-fluid flows (Tai et al., 2019) is proposed for describing the development of a debris flow fan. The model equations are derived in a terrain-following coordinate system, in which the coordinates are in coincidence with the topographic surface and the deposition/erosion is treated as the sub-topography. Numerical validation is performed against flume experiments (Tsunetaka et al., 2019), where the sediment-water mixture is released from a channel and merging into a gentle inclined flat plain via a steady water inflow. In this study, we shall illustrate the impacts of the sediment concentration on the evolution of the debris-flow fan, such as the location, distribution, geometry of debris-flow fan as well as the flow paths.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.