The molecular mechanisms underlying the initiation and maintenance of the embryonic pathway in plants are largely unknown. To obtain more insight into these processes, we used subtractive hybridization to identify genes that are upregulated during the in vitro induction of embryo development from immature pollen grains of Brassica napus (microspore embryogenesis). One of the genes identified, BABY BOOM ( BBM ), shows similarity to the AP2/ERF family of transcription factors and is expressed preferentially in developing embryos and seeds. Ectopic expression of BBM in Arabidopsis and Brassica led to the spontaneous formation of somatic embryos and cotyledon-like structures on seedlings. Ectopic BBM expression induced additional pleiotropic phenotypes, including neoplastic growth, hormone-free regeneration of explants, and alterations in leaf and flower morphology. The expression pattern of BBM in developing seeds combined with the BBM overexpression phenotype suggests a role for this gene in promoting cell proliferation and morphogenesis during embryogenesis.
Flax (Linum usitatissimum L.) phloem fibers elongate considerably during their development and intrude between existing cells. We questioned whether fiber elongation is caused by cell tip growth or intercalary growth. Cells with tip growth are characterized by having two specific zones of cytoplasm in the cell tip, one with vesicles and no large organelles at the very tip and one with various organelles amongst others longitudinally arranged cortical microtubules in the subapex. Such zones were not observed in elongating flax fibers. Instead, organelles moved into the very tip region, and cortical microtubules showed transversal and helical configurations as known for cells growing in intercalary way. In addition, pulse-chase experiments with Calcofluor White resulted in a spotted fluorescence in the cell wall all over the length of the fiber. Therefore, it is concluded that fiber elongation is not achieved by tip growth but by intercalary growth. The intrusively growing fiber is a coenocytic cell that has no plasmodesmata, making the fibers a symplastically isolated domain within the stem.
The early developmental stages of maize caryopses were studied at a fine structural level. Emphasis was placed on the interactions between the developing embryo and the surrounding endosperm. It was found that the placentochalazal region of the endosperm contains cells showing ultrastructural features of transfer cells, including wall ingrowths. This indicates an important function of these cells in the transport of nutrients supplying the developing embryo. Near the basal region of the embryo, densely cytoplasmic endosperm cells occurred, without wall ingrowths but with a mass of highly ordered rough endoplasmic reticulum indicating a synthesis function of this part of the endosperm. The products, probably membranes and proteins, are most likely taken up by the suspensor of the embryo. At about 7 days after pollination, endosperm cells degenerate near the embryo axis and the scutellum. The endosperm remnants might then serve as a food supply for the embryo as well.
In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actinbundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.The plant actin cytoskeleton plays an essential role in cell division, cytoplasmic organization, cytoplasmic streaming, cell growth, and, consequently, plant morphogenesis. Actin-binding proteins modulate the formation and dynamics of F-actin and its configuration. Among these proteins are the actin-bundling proteins, which are able to cross-link adjacent actin filaments, resulting in bundles consisting of several parallel actin filaments (Thomas et al., 2009). In plant cells, bundling of actin filaments occurs (Thomas et al., 2009), which is likely mediated by actin-bundling proteins. There are four known families of actin-bundling proteins in plants: villins (Vidali et al
Polymer microcapsules can be used as controlled release systems in drugs or in foods. Using layer-by-layer adsorption of common food proteins and polysaccharides, we produced a new type of microcapsule with tunable strength and permeability. The shell consists of alternating layers of pectin and whey protein fibrils, yielding a fiber-reinforced nanocomposite shell. The strength can be tightly controlled by varying the number of layers or the density and length of the fibrils in the protein layers. The mechanical stability of these microcapsules appears to be superior to that of currently available multilayer capsules. The method involves only standard unit operations and has the potential for scaling up to industrial production volumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.