SummaryThe superior regeneration capacity of Lycopersicon peruvianum was introduced into the cultivated tomato Lycopersicon esculentum by backcrossing hybrid material with the tomato genotype VF11. In segregating material derived from these backcrosses, the ability to regenerate shoots on root explants cultured on a zeatin-containing medium, was highly correlated with the ability to regenerate shoots on established callus cultures. The efficient shoot-regenerating root explant system permitted us to study the genetics of this trait and to locate the genes involved, using a set of morphological markers defining all 12 tomato chromosomes. Depending on the tomato genotype, mono, -di-or trigenic ratios were observed. It is concluded that a dominant L. peruvianurn allele at a locus (Rg-7) near the middle of chromosome 3 determines efficient shoot regeneration on root explants in tomato in combination with dominant alleles at one or two other loci of either L. peruvianum or L. esculentum origin. The map location of the Rg-7 locus was refined further using a number of chromosome-3-specific RFLPs. The addition of new classical and RFLP linkage data to existing literature data and subsequent processing resulted in a revised and integrated map of tomato chromosome 3. From a morphological and physiological analysis of genotypes differing in Rg phenotype, it is concluded that the genetic component associated with regeneration determines the maintenance of morphogenetic competence and not the sensitivity to hormones.
The early developmental stages of maize caryopses were studied at a fine structural level. Emphasis was placed on the interactions between the developing embryo and the surrounding endosperm. It was found that the placentochalazal region of the endosperm contains cells showing ultrastructural features of transfer cells, including wall ingrowths. This indicates an important function of these cells in the transport of nutrients supplying the developing embryo. Near the basal region of the embryo, densely cytoplasmic endosperm cells occurred, without wall ingrowths but with a mass of highly ordered rough endoplasmic reticulum indicating a synthesis function of this part of the endosperm. The products, probably membranes and proteins, are most likely taken up by the suspensor of the embryo. At about 7 days after pollination, endosperm cells degenerate near the embryo axis and the scutellum. The endosperm remnants might then serve as a food supply for the embryo as well.
The actin cytoskeleton is involved in the transport and positioning of Golgi bodies, but the actin-based processes that determine the positioning and motility behavior of Golgi bodies are not well understood. In this work, we have studied the relationship between Golgi body motility behavior and actin organization in intercalary growing root epidermal cells during different developmental stages. We show that in these cells two distinct actin configurations are present, depending on the developmental stage. In small cells of the early root elongation zone, fine filamentous actin (F-actin) occupies the whole cell, including the cortex. In larger cells in the late elongation zone that have almost completed cell elongation, actin filament bundles are interspersed with areas containing this fine F-actin and areas without F-actin. Golgi bodies in areas with the fine F-actin exhibit a non-directional, wiggling type of motility. Golgi bodies in areas containing actin filament bundles move up to 7 μm s⁻¹. Since the motility of Golgi bodies changes when they enter an area with a different actin configuration, we conclude that the type of movement depends on the actin organization and not on the individual organelle. Our results show that the positioning of Golgi bodies depends on the local actin organization.
Key words. Cellulose microfibril, cell wall texture, scanning electron microscopy, transmission electron microscopy. SummaryCellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the characteristics of cell wall textures, i.e. the architectures of the CMFs in the wall, of root hairs of Arabidopsis thaliana, Medicago truncatula and Vicia sativa and compare the different techniques we used to study them. Root hairs of these species have a random primary cell wall deposited at the root hair tip, which covers the outside of the growing and fully grown hair. The secondary wall starts between 10 (Arabidopsis) and 40 (Vicia) μm from the hair tip and the CMFs make a small angle, Z as well as S direction, with the long axis of the root hair. CMFs are 3-4 nm wide in thin sections, indicating that single cellulose synthase complexes make them. Thin sections after extraction of cell wall matrix, leaving only the CMFs, reveal the type of wall texture and the orientation and width of CMFs, but CMF density within a lamella cannot be quantified, and CMF length is always underestimated by this technique. Field emission scanning electron microscopy and surface preparations for transmission electron microscopy reveal the type of wall texture and the orientation of individual CMFs. Only when the orientation of CMFs in subsequent deposited lamellae is different, their density per lamella can be determined. It is impossible to measure CMF length with any of the EM techniques.
An upward shift in the concentration of calcium present in the medium during somatic embryogenesis increased the number of embryos produced approximately two-fold. This was observed when embryogenic suspension cells grown in 2,4-D medium with the normal calcium concentration of 10(-3) M were transferred to hormone-free medium containing 10(-2) M calcium and when embryogenic suspension cells grown in 2,4-D medium containing 10(-4) M calcium were transferred to hormone-free medium with 10(-3) M calcium. At calcium concentrations between 6·10(-3) and 10(-2) M globular stage somatic embryos were found in cultures supplemented with 2·10(-6) M of 2,4-D indicating that elevated calcium counteracts the inhibitory effect of 2,4-D on somatic embryogenesis. No qualitative changes were found in the pattern of extracellular polypeptides as a result of growth and embryogenesis in media with different calcium concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.