Human immunodeficiency virus type 2 (HIV-2)-related viruses were isolated from a Gambian dying of exclusively neurological disease (HIV-2D194) and from an asymptomatic Ghanian (HIV-2D205). Both strains exhibited properties of HIV-1 biological subtype c: they grew slowly and induced few or no syncytia but eventually produced high levels of particle-associated reverse transcriptase in cultures of fresh peripheral blood lymphocytes, and they established stable infection of T-lymphoma (HUT-78) and monocytic (U937) cell lines. Each produced even higher levels of reverse transcriptase when fresh human monocytes/macrophages were used as target cells. The viruses were molecularly cloned after a single passage in culture, in order to minimize in vitro selection of subtypes present in vivo. Restriction-site analysis showed heterogeneity within each isolate. Nucleotide sequence analysis of a portion of the HIV-2D194 genome revealed that it is a member of the prototypic HIV-2 family, displaying 13% divergence versus HIV-2ROD and HIV-2NIHZ, as compared to 9% divergence between HIV-2ROD and HIV-2NIHZ. In contrast, HIV-2D205 is the most highly divergent HIV-2 strain yet described: it is equidistant in relation between the known HIV-2 strains and the simian immunodeficiency virus isolates from rhesus macaque monkeys (23-25% divergence).
It has been suggested that the human immunodeficiency virus type 2 (HIV-2) and the simian immunodeficiency virus from rhesus macaques (SIVmac) evolved from the sooty mangabey virus SIVsm (ref. 1). We now describe an HIV-2-related isolate, HIV-2-D205, from a healthy Ghanaian woman that is genetically equidistant to the prototypic HIV-2 strains and to SIVsm and SIVmac. Supported by the observation that HIV-2D205 differs in a step of envelope glycoprotein processing, our data indicate that it could represent an alternative HIV-2 subtype and that viruses of the HIV-2/SIVsm/SIVmac group could have already infected humans before HIV-2 and SIVsm/SIVmac diverged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.