Nonindigenous invasive plants pose a major threat to natural communities worldwide. Biological control of weeds via selected introduction of their natural enemies can affect control over large spatial areas but also risk nontarget effects. To maximize effectiveness while minimizing risk, weed biocontrol programs should introduce the minimum number of host-specific natural enemies necessary to control an invasive nonindigenous plant. We used elasticity analysis of a matrix model to help inform biocontrol agent selection for garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande). The Eurasian biennial A. petiolata is considered one of the most problematic invaders of temperate forests in North America. Four weevil species in the genus Ceutorhynchus (Coleoptera: Curculionidae) are currently considered potential biocontrol agents. These species attack rosettes (C. scrobicollis), stems (C. roberti, C. alliariae), and seeds (C. constrictus) of A. petiolata. Elasticity analyses using A. petiolata demographic parameters from North America indicated that changes in the rosette-to-flowering-plant transition and changes in fecundity consistently had the greatest impact on population growth rate. These results suggest that attack by the rosette-feeder C. scrobicollis, which reduces overwintering survival, and seed or stem feeders that reduce seed output should be particularly effective. Model outcomes differed greatly as A. petiolata demographic parameters were varied within ranges observed in North America, indicating that successful control of A. petiolata populations may occur under some, but not all, conditions. Using these a priori analyses we predict: (1) rosette mortality and reduction of seed output will be the most important factors determining A. petiolata demography; (2) the root-crown feeder C. scrobicollis will have the most significant impact on A. petiolata demography; (3) releases of single control agents are unlikely to control A. petiolata across its full range of demographic variability; (4) combinations of agents that simultaneously reduce rosette survival and seed production will be required to suppress the most vigorous A. petiolata populations. These predictions can be tested using established long-term monitoring sites coupled with a designed release program. If demographic models can successfully predict biocontrol agent impact on invasive plant populations, a continued dialogue and collaboration between empirical and theoretical approaches may be the key to the development of successful biocontrol tactics for plant invaders in the future.
SummaryThe recent invasion by Ambrosia artemisiifolia (common ragweed) has, like no other plant, raised the awareness of invasive plants in Europe. The main concerns regarding this plant are that it produces a large amount of highly allergenic pollen that causes high rates of sensitisation among humans, but also A. artemisiifolia is increasingly becoming a major weed in agriculture. Recently, chemical and mechanical control methods have been developed and partially implemented in Europe, but sustainable control strategies to mitigate its spread into areas not yet invaded and to reduce its abundance in badly infested areas are lacking. One management tool, not yet implemented in Europe but successfully applied in Australia, is biological control. Almost all natural enemies that have colonised A. artemisiifolia in Europe are polyphagous and cause little damage, rendering them unsuitable for a system management approach. Two fungal pathogens have been reported to adversely impact A. artemisiifolia in the introduced range, but their biology makes them unsuitable for mass production and application as a mycoherbicide. In the native range of A. artemisiifolia, on the other hand, a number of herbivores and pathogens associated with this plant have a very narrow host range and reduce pollen and seed production, the stage most sensitive for long-term population management of this winter annual. We discuss and propose a prioritisation of these biological control candidates for a classical or inundative biological control approach against A. artemisiifolia in Europe, capitalising on past experiences from North America, Asia and Australia.
Tripleurospermum perforatum is an invasive weedy species which exhibits strong over‐compensating density dependence. Interactions between density‐dependent survival, probability of flowering and fecundity were modelled and their impact on the population dynamics were examined. When only fecundity was density‐dependent, the dynamics were similar to those observed in the model containing all three density‐dependent terms. Density‐dependent survival was a stabilizing process when acting in combination with density‐dependent fecundity and probability of flowering; removing density‐dependent survival from the model produced two‐point cycles. The addition of a seed bank was also stabilizing. Simulations of control strategies at different life‐history stages indicated that full control would be difficult due to the strong over‐compensating density dependence, with severe reductions in fecundity and late season survival necessary in order to reduce equilibrium seed density and biomass.
The foremost document that comprehensively reports on biological control introductions against weeds-'Biological control of weeds: a world catalogue of agents and their target weeds'-has been updated and now includes all deliberate releases made through 2012. It includes data on 1555 intentional releases of 468 biological control agent species used against 175 species of target weeds in 48 plant families, in 90 countries. For 55 (31.4%) of the target weed species, only one biocontrol agent was introduced. The largest number of agent species (44) was introduced for the biological control of Lantana camara (Verbenaceae). Three insect orders (Coleoptera, Lepidoptera and Diptera) comprised about 80% of all biocontrol agent species released and releases made. Of the 468 biocontrol agent species introduced, 332 (70.9%) established in at least one instance. Of the 313 species, for which impact could be categorized, 172 (55.0%) caused medium, variable or heavy levels of damage (impacts). Of all releases made through 2012, 982 (63.2%) led to establishment. Forty-two releases were judged too early post-release to categorize impact, leaving 940 releases for which impact analyses were conducted. Similar to agent species, approximately half of the established releases (503 or 53.5%) caused medium, variable or heavy levels of damage on the target weeds, and almost a quarter of releases (225 or 23.9%) caused heavy impact. Across all countries and regions, 65.7% of the weeds targeted for biological control experienced some level of control. These data indicate the value of this practice, on its own, or as a supplement to other methods, in the management of invasive plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.