Summary Allelopathy can play an important role in structuring plant communities, but allelopathic effects are often difficult to detect because many methods used to test for allelopathy can be confounded by experimental artifacts. The use of activated carbon, a technique for neutralizing allelopathic compounds, is now employed in tests for allelopathy; however, this technique also could produce large experimental artifacts. In three independent experiments, it was shown that adding activated carbon to potting media affected nutrient availability and plant growth. For most species tested, activated carbon increased plant biomass, even in the absence of the potentially allelopathic agent. The increased growth corresponded to increased plant nitrogen content, likely resulting from greater nitrogen availability. Activated carbon also affected nitrogen and other nutrient concentrations in soil media in the absence of plants. The observed effects of activated carbon on plant growth can confound its use to test for allelopathy. The detection of allelopathy relies on the difference between plant growth in medium with carbon and that in medium without carbon in the presence of the potentially allelopathic competitor; however, this difference may be biased if activated carbon alters soil nutrient availability and plant growth even in the absence of the focal allelopathic agent.
Keywords: Invasive species Ecosystem function Insect pests Invasive plants Ecological restoration Biological control Natural ecosystems a b s t r a c tOf the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and ''in progress," for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 62% (13) achieved complete control of the target pest, 19% (4) provided partial control, and 43% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 49% (24) are still in progress. For both categories of pests, some projects' success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (62% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active.
The foremost document that comprehensively reports on biological control introductions against weeds-'Biological control of weeds: a world catalogue of agents and their target weeds'-has been updated and now includes all deliberate releases made through 2012. It includes data on 1555 intentional releases of 468 biological control agent species used against 175 species of target weeds in 48 plant families, in 90 countries. For 55 (31.4%) of the target weed species, only one biocontrol agent was introduced. The largest number of agent species (44) was introduced for the biological control of Lantana camara (Verbenaceae). Three insect orders (Coleoptera, Lepidoptera and Diptera) comprised about 80% of all biocontrol agent species released and releases made. Of the 468 biocontrol agent species introduced, 332 (70.9%) established in at least one instance. Of the 313 species, for which impact could be categorized, 172 (55.0%) caused medium, variable or heavy levels of damage (impacts). Of all releases made through 2012, 982 (63.2%) led to establishment. Forty-two releases were judged too early post-release to categorize impact, leaving 940 releases for which impact analyses were conducted. Similar to agent species, approximately half of the established releases (503 or 53.5%) caused medium, variable or heavy levels of damage on the target weeds, and almost a quarter of releases (225 or 23.9%) caused heavy impact. Across all countries and regions, 65.7% of the weeds targeted for biological control experienced some level of control. These data indicate the value of this practice, on its own, or as a supplement to other methods, in the management of invasive plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.