IntroductionSaline-alkali degradation in grassland significantly affects plant community composition and soil physical and chemical properties. However, it remains unclear whether different degradation gradients affect soil microbial community and the main soil driving factors. Therefore, it is important to elucidate the effects of saline-alkali degradation on soil microbial community and the soil factors affecting soil microbial community in order to develop effective solutions to restore the degraded grassland ecosystem.MethodsIn this study, Illumina high-throughput sequencing technology was used to study the effects of different saline-alkali degradation gradients on soil microbial diversity and composition. Three different gradients were qualitatively selected, which were the light degradation gradient (LD), the moderate degradation gradient (MD) and the severe degradation gradient (SD).ResultsThe results showed that salt and alkali degradation decreased the diversity of soil bacterial and fungal communities, and changed the composition of bacterial and fungal communities. Different degradation gradients had different adaptability and tolerance species. With the deterioration of salinity in grassland, the relative abundance of Actinobacteriota and Chytridiomycota showed a decreasing trend. EC, pH and AP were the main drivers of soil bacterial community composition, while EC, pH and SOC were the main drivers of soil fungal community composition. Different microorganisms are affected by different soil properties. The changes of plant community and soil environment are the main factors limiting the diversity and composition of soil microbial community.DiscussionThe results show that saline-alkali degradation of grassland has a negative effect on microbial biodiversity, so it is important to develop effective solutions to restore degraded grassland to maintain biodiversity and ecosystem function.
SummaryBiological invasions are determined by interactions between resident plant communities and exotic plants. Time of invasion and species diversity of resident plant communities may greatly affect exotic plant invasions. We assembled low‐ and high‐diversity resident plant communities by sowing seeds of four and eight grassland species, respectively, and at each of three time periods (1, 4 and 7 weeks after sowing), the resident communities were invaded by Hydrocotyle vulgaris or not. We also constructed a plant community with H. vulgaris alone. Presence of H. vulgaris had no effect on biomass of the resident communities or biomass of each component species. Community age significantly affected biomass and evenness of the resident communities, and their competition with H. vulgaris, but the priority effect of the resident communities was slight. Increasing species richness did not change the interaction between H. vulgaris and the resident plant communities. These findings suggest a weaker competitive exclusionary effect of H. vulgaris on the resident communities with early germination, and H. vulgaris tended to have no significant impact on intact resident terrestrial plant communities. Thus, the potential risk of H. vulgaris invasion is low, especially in the communities with young age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.