Using computer simulations, we investigate the interfacial structure of sodium dodecyl sulphate (SDS) monolayers adsorbed at the water surface and water-oil interfaces. Using an algorithm that removes the averaging effect of the capillary waves, we obtain a detailed view of the solvation structure of water around the monolayer. We investigate surface concentrations between 45 and 33 Å 2 per surfactant, which are near experimental conditions corresponding to the critical micellar concentration and the formation of Newton black films. The surfactants induce a layering structure in water, which disappears at approximately 1 nm from the monolayer plane. The water molecules exhibit a preferred orientation with the dipoles pointing towards the monolayer. The orientational order decays slowly, but it does not influence the hydrogen bond structure of water, which is significantly disrupted in the interfacial region only. These structural changes are qualitatively the same in SDS-water and oil-SDS-water interfaces. In the latter case, we find a small degree of penetration of oil in the monolayer (between 0.2 and 0.25 molecules per SDS). This small penetration has a measurable effect on the monolayer, which increases its thickness by approximately 10 per cent. The bending modulus of the SDS monolayers is of the order of the thermal energy, k B T .
We report molecular dynamics simulations of Newton black films (NBFs), ultra thin films of aqueous solutions stabilized with two monolayers of ionic surfactants, sodium dodecyl sulfate. We show that at low water content conditions and areas per surfactant corresponding to experimental estimates in NBFs, homogeneous films undergo an adhesion "transition," which results in a very thin adhesive film coexisting with a thicker film. We identify the adhesive film with the equilibrium structure of the Newton black film. We provide here a direct microscopic view of the formation of these important structures, which have been observed in experimental studies of emulsions and foams. We also report a detailed investigation of the structural properties and interfacial fluctuation spectrum of the adhesive film. Our analysis relies on the definition of an "intrinsic surface," which is used to remove the averaging effect that the capillary waves have on the film properties.
Newton black films (NBFs) can appear under a wide range of experimental conditions. NBFs define the adhesive states of foams and emulsions, showing their formation is a very general physical phenomenon. We show that the existence of NBFs and their whole experimental behavior can be understood within the theory of wetting transitions. NBFs are experimental realizations of partial wetting or pre-wetting states. Hence, they provide experimental systems to investigate the pre-wetting transition, and the spreading behavior under conditions that are very difficult to realize in other experimental systems. We also introduce two new computational approaches to obtain the disjoining pressure isotherm from canonical simulations, and to estimate the contact angles of droplets of nanoscopic dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.