We present a study of the effects of simultaneous charge-and spin-frustration on the twodimensional strongly correlated quarter-filled band on an anisotropic triangular lattice. Our conclusions are based on exact diagonalization studies that include electron-electron interactions as well as adiabatic electron-phonon coupling terms treated self-consistently. The broken-symmetry states that dominate in the weakly frustrated region near the rectangular lattice limit are the well known antiferromagnetic state with in-phase lattice dimerization along one direction, and the Wigner crystal state with the checkerboard charge order. For moderate to strong frustration, however, the dominant phase is a novel spin-singlet paired-electron crystal (PEC), consisting of pairs of charge-rich sites separated by pairs of charge-poor sites. The PEC, with coexisting charge-order and spin-gap in two dimension, is the quarter-filled band equivalent of the valence bond solid (VBS) that can appear in the frustrated half-filled band within antiferromagnetic spin Hamiltonians. We discuss the phase diagram as a function of on-site and intersite Coulomb interactions as well as electronphonon coupling strength. We speculate that the spin-bonded pairs of the PEC can become mobile for even stronger frustration, giving rise to a paired-electron liquid. We discuss the implications of the PEC concept for understanding several classes of quarter-filled band materials that display unconventional superconductivity, focusing in particular on organic charge transfer solids. Our work points out the need to go beyond quantum spin liquid (QSL) concepts for highly frustrated organic charge-transfer solids such as κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which we believe show frustration-induced charge disproportionation at low temperatures. We discuss possible application to layered cobaltates and 1 4 -filled band spinels.
We report exact calculations of magnetic and superconducting pair-pair correlations for the half-filled band Hubbard model on an anisotropic triangular lattice. Our results for the magnetic phases are similar to those obtained with other techniques. The superconducting pair-pair correlations at distances beyond nearest neighbor decrease monotonically with increasing Hubbard interaction U for all anisotropy, indicating the absence of frustration-driven superconductivity within the model.
Sputum cytokines, chemokines and growth factors were increased in severe asthma, primarily with increased neutrophils. Factor analysis identified complex inflammatory protein interactions, suggesting airway inflammation in asthma is characterized by overlapping immune pathways. Thus, focus on a single specific inflammatory mediator or pathway may limit understanding the complexity of inflammation underlying airway changes in asthma and selection of appropriate therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.