The processes of tribofilm formation and disruption and the predominant tribomechanisms of unlubricated ceramic materials were investigated experimentally. Sliding experiments in humidity controlled atmospheres revealed that the formation of interfacial tribofilms significantly affects the steady-state friction and wear properties of ceramics. Scanning electron microscopy and various composition analysis techniques demonstrated that although tribochemical reactions might occur, the principal mechanisms of tribofilm formation were the generation, agglomeration, and compaction of fine wear debris produced from both sliding surfaces. The tribofilms exhibited different tribological characteristics, depending on their elemental compositions and the humidity. For all the ceramic pairs tested, the steadystate coefficients of friction decreased with relative humidity. In contrast to the conventional fracture toughness approach, surface profilometry and microscopy studies showed that the highest wear rates were encountered with the toughest ceramic. Plowing grooves parallel to the direction of sliding, fine wear debris of round and cylindrical shapes, microcracking, and localized delamination of the tribofilms were identified. Microscopic observations suggested that damage of the subsurface material adjacent to the interface of the tribofilms was immeasurable. Qualitative comparison of the topographical features of worn surfaces indicated that, depending on the humidity and the type of ceramic, microplasticity, microfracture, and delamination of the tribofilms were the prevailing steady-state tribomechanisms.
We present a unique design and fabrication process for a lateral, gate-confined double quantum dot in an accumulation mode metal-oxide-semiconductor (MOS) structure coupled to an integrated microwave resonator. All electrostatic gates for the double quantum dot are contained in a single metal layer, and use of the MOS structure allows for control of the location of the two-dimensional electron gas via the location of the accumulation gates. Numerical simulations of the electrostatic confinement potential are performed along with an estimate of the coupling of the double quantum dot to the microwave resonator. Prototype devices are fabricated and characterized by transport measurements of electron confinement and reflectometry measurements of the microwave resonator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.