A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8×106 positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ∼250 GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron ratio shows no observable anisotropy. Together, these features show the existence of new physical phenomena
Pancreatic cancer is one of the intractable diseases and an effective therapeutic strategy is required to improve the prognosis. We examined possible antitumor effects of adenoviruses expressing melanoma differentiation-associated gene-7/interleukin-24 (Ad-mda-7) and a heat-shock protein 90 (Hsp90) inhibitor to human pancreatic carcinoma cells. Ad-mda-7 and an Hsp90 inhibitor, geldanamycin (GA), produced cytotoxic effects, and a combinatory use of Ad-mda-7 and GA further achieved synergistic effects. Administration of N-acetyl-L-cysteine, an inhibitor of reactive oxygen species, eliminated Ad-mda-7- and GA-mediated cytotoxicity. Ad-mda-7 augmented phosphorylated AKT levels but GA did not influence the phosphorylation. GA-treated cells showed cleavage of poly-(ADP-ribose) polymerase but not caspase-3, and upregulated Hsp70 and LC3A/B II levels, whereas Ad-mda-7-treated cells did not. GA treatments augmented ubiquitination and markedly increased melanoma differentiation-associated gene-7 (MDA-7) expression levels. These findings suggest that Ad-mda-7-mediated cytotoxicity is dependent on reactive oxygen species but independent of apoptosis or autophagy, and that GA-mediated cytotoxicity was linked with caspase-independent apoptosis and/or autophagy. A mechanism underlying the combinatory effects of Ad-mda-7 and GA remained complex and the synergism is attributable to multiple factors including increased MDA-7 protein stability by GA.
Non-neoplastic epithelial disorders of the vulva (NNEDV) are prevalent and refractory gynecological diseases. However, the underlying pathogenesis of these diseases remain unclear. The present study aimed to investigate the expression and significance of cyclin D1, cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase inhibitor P27 (P27) in patients with NNEDV and provide a reference for clinical diagnosis and treatment. Normal vulvar skin samples from patients with perineum repair (control group, n=20) and skin samples from the vulvar lesions of patients with NNEDV (NNEDV group, n=36) were collected. Expression levels of cyclin D1, CDK4 and P27 were assessed in the samples using immunohistochemistry. The expression of each protein was evaluated based on the mean optical density (MOD). The MODs of cyclin D1 and CDK4 were significantly higher in samples of the three pathological types of NNEDV, namely squamous hyperplasia (SH), lichen sclerosus (LS) and mixed SH and LS lesions, compared with those of the control group. The MOD of P27 was lower in samples of the three pathological types of NNEDV than in the control group, although the difference was not statistically significant. No significant differences in the MOD of cyclin D1, CDK4 and P27 were detected among the three pathological types of NNEDV. The ratios of the MOD of cyclin D1 and CDK4 in the prickle cell layer to those in the basal cell layer were significantly higher in the NNEDV group than in the control group. However, the ratio of the MOD of P27 in the prickle cell layer to that in the basal cell layer exhibited no significant difference between the NNEDV and control groups. NNEDV has the potential for malignant transformation. The occurrence and development of NNEDV may be associated with the acceleration of cell proliferation, in which cyclin D1, CDK4 and P27 contribute to regulation of the cell cycle. Therefore, cyclin D1, CDK4 and P27 may be potential targets in the development of new clinical therapeutic drugs for patients with NNEDV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.