Indigenous knowledge is unevenly distributed. Individual knowledge level may be affected by many factors such as gender, age, ethnicity, profession, religious and cultural beliefs, abundance and usefulness of the species. This study documents indigenous knowledge of herbaceous and woody plant species of farmers and herders in southwestern Niger. Specifically, we examine the effects of age, gender, and ethnicity on knowledge of local vegetation. Results from the study showed that on average a higher proportion of woody species was identified by the respondents compared to herbaceous species. Both gender and ethnicity had a significant effect on the identification of herbaceous species but no effect on identification of woody species. Respondents in lower age group (10 to 30 years) identified lower number of species compared to other age classes. There seems to be a curvilinear relationship between age of respondents and number of plant species identified. Results from this study reaffirm the uneven distribution of indigenous knowledge within a given area due to social factors. The main challenge is how to incorporate these social differences in knowledge of native plant species into sustainable management and conservation of community natural resources.
Competing claims on natural resources become increasingly acute, with the poor being most vulnerable to adverse outcomes of such competition. A major challenge for science and policy is to progress from facilitating univocal use to guiding stakeholders in dealing with potentially conflicting uses of natural resources. The development of novel, more equitable, management options that reduce rural poverty is key to achieving sustainable use of natural resources and the resolution of conflicts over them. Here, we describe an interdisciplinary and interactive approach for: (i) the understanding of competing claims and stakeholder objectives; (ii) the identification of alternative resource use options, and (iii) the scientific support to negotiation processes between stakeholders. Central to the outlined approach is a shifted perspective on the role of scientific knowledge in society. Understanding scientific knowledge as entering societal arenas and as fundamentally negotiated, the role of the scientist becomes a more modest one, a contributor to ongoing negotiation processes among stakeholders. Scientists can, therefore, not merely describe and explain resource-use dynamics and competing claims, but in doing so, they should actively contribute to negotiation processes between stakeholders operating at different scales (local, national, regional, and global). Together with stakeholders, they explore alternatives that can contribute to more sustainable and equitable use of natural resources and, where possible, design new technical options and institutional arrangements.
Because of an increasing demand for animal-source foods, an increasing desire to reduce poverty and an increasing need to reduce the environmental impact of livestock production, tropical farming systems with livestock must increase their productivity. An important share of the global human and livestock populations are found within smallholder mixed-crop-livestock systems, which should, therefore, contribute significantly towards this increase in livestock production. The present paper argues that increased livestock production in smallholder mixed-crop-livestock systems faces many constraints at the level of the farm and the value chain. The present paper aims to describe and explain the impact of increased production from the farm and farmers' perspective, in order to understand the constraints for increased livestock production. A framework is presented that links farming systems to livestock value chains. It is concluded that farming systems that pass from subsistence to commercial livestock production will: (1) shift from rural to urban markets; (2) become part of a different value chain (with lower prices, higher demands for product quality and increased competition from peri-urban producers and imports); and (3) have to face changes in within-farm mechanisms and crop-livestock relationships. A model study showed that feed limitation, which is common in tropical farming systems with livestock, implies that maximum herd output is achieved with small herd sizes, leaving low-quality feeds unutilised. Maximal herd output is not achieved at maximal individual animal output. Having more animals than required for optimal production -which is often the case as a larger herd size supports non-production functions of livestock, such as manure production, draught, traction and capital storage -goes at the expense of animal-source food output. Improving low-quality feeds by treatment allows keeping more animals while maintaining the same level of production. Ruminant methane emission per kg of milk produced is mainly determined by the level of milk production per cow. Part of the methane emissions, however, should be attributed to the non-production functions of ruminants. It was concluded that understanding the farm and farmers' perceptions of increased production helps with the understanding of productivity increase constraints and adds information to that reported in the literature at the level of technology, markets and institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.