The effect of tellurium precipitates was studied in medium resistivity (103–106 Ω cm) undoped and Cl-doped CdTe using differential scanning calorimetry (DSC) and mid-infrared spectroscopy and the results were correlated with near-infrared microscopy photographs. When present in a significant quantity (∼0.25 wt %), we show that Te precipitates are detectable using DSC measurements. In the mid-infrared, the contribution of the absorption by free-carriers is negligible, and therefore, the effect of the Te precipitates in these crystals can be considered uncoupled from the effects of Cd vacancies.
We are attempting to grow bulk AlN that would be suitable as a substrate for nitride film growth. Bulk AlN films were grown by physical vapor transport on 3.5° offaxis and on-axis 6H SiC seed crystals and characterized by TEM, x-ray-diffraction, Auger electron microscopy, and SEM. TEM images show that the bulk AlN does not have the columnar structure typically seen in AlN films grown by MOCVD. Although further optimization is required before the bulk AlN is suitable as a substrate, we find that the structural characteristics achieved thus far indicate that quality bulk AlN substrates may be obtained in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.