Acyl-CoA-binding protein (ACBP) was purified from rat liver. The Mr was determined as 9932 +/- 10 by mass spectrometry and calculated as 9937.8 from the sequence. The protein binds acyl-CoA esters (C8-C16) with high affinity, but was unable to bind fatty acids. ACBP was found mainly (86%) in the soluble fraction, and the concentration was highest in liver, 5-6 micrograms/mg of soluble protein. The complete primary structure was determined by a combination of gas-phase Edman degradations and mass spectrometry. Extensive use of 252Cf plasma-desorption mass spectrometry facilitated the identification and verification of peptides. Comparison with the previously determined sequence of bovine acyl-CoA-binding protein revealed a very strong sequence similarity (83%), and all of the differences could be accounted for by single base changes.
Bovine liver was shown to contain a hitherto undescribed medium-chain acyl-CoA-binding protein. The protein co-purifies with fatty-acid-binding proteins, but was, unlike these proteins, unable to bind fatty acids. The protein induced synthesis of medium-chain acyl-CoA esters on incubation with goat mammary-gland fatty acid synthetase. The possible function of the protein is discussed.
A number of 3-isoxazolol bioisosteres, 7a-i, of (S)-glutamic acid (Glu), in which the methyl group of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA, 1) was replaced by different 5-membered heterocyclic rings, were synthesized. Comparative in vitro pharmacological studies on this series of AMPA analogues were performed using receptor binding assays (IC50 values) and the electrophysiological rat cortical slice model (EC50 values). None of these compounds showed detectable affinity for the N-methyl-D-aspartic acid subtype of Glu receptors. Some of the compounds were weak inhibitors of [3H]kainic acid binding. The inhibitory effects on [3H]AMPA binding and agonist potencies at AMPA receptors of 7a-i were strictly dependent on the structure, electrostatic potential, and methyl substitution of the heterocyclic 5-substituent. Thus, while 7a (IC50 = 0.094 microM; EC50 = 2.3 microM) was approximately equipotent with AMPA (IC50 = 0.023 microM; EC50 = 5.4 microM), (RS)-2-amino-3-[3-hydroxy-5-(1H-imidazol-2-yl)isoxazol-4-yl]propio nic acid (7b) (IC50 = 48 microM; EC50 = 550 microM) was some 2 orders of magnitude weaker than AMPA, and (RS)-2-amino-3-[3-hydroxy-5-(1-methyl-1H-imidazol-2-yl)-isoxazol-4 -yl] propionic acid (7c) (IC50 > 100 microM; EC50 > 1000 microM) was inactive. Furthermore, (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (7i) (IC50 = 0.030 microM; EC50 = 0.92 microM) was more potent than AMPA, whereas its N-1 methyl isomer, (RS)-2-amino-3-[3-hydroxy-5-(1-methyl-1H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (7h) (IC50 = 54 microM; EC50 > 1000 microM) was inactive as an AMPA agonist. A quantitative structure-activity relationship (QSAR) analysis revealed a positive correlation between receptor affinity, electrostatic potential near the nitrogen atom at the "ortho" position of the heterocyclic 5-substituent, and the rotational energy barrier around the bond connecting the two rings. We envisage that a hydrogen bond between the protonated amino group and an ortho-positioned heteroatom of the ring substituent at the 5-position stabilize receptor-active conformations of these AMPA analogues.
We investigated the effect of exogenously added fatty acids on de novo synthesis of individual fatty acids and their incorporation into triacylglycerols by dispersed lactating ruminant mammary gland epithelial cells. Palmitate addition strongly stimulated synthesis and incorporation of butyrate and, to a smaller extent, palmitate synthesis and incorporation. Oleic acid strongly inhibited synthesis of all fatty acids except butyrate, whereas the effect of lauric acid was nearly neutral. Free fatty acid depletion of the mammary gland cells potentiated the effect of palmitate and made oleate less inhibitory.
The induction of acyl-CoA-binding protein (ACBP) and ACBP mRNA was investigated in 3T3-L1 cells during growth and insulin-induced differentiation. The level of ACBP relative to both total soluble protein and DNA increased during insulin-stimulated conversion of 3T3-L1 cells from preadipocytes into fully developed adipocytes. So did the total rate of lipogenesis, as measured by incorporation of [1-14C]acetate. A similar increase in ACBP mRNA relative to total RNA was observed. These results therefore suggest that ACBP plays a specific role in the lipogenic process. However, this role might be indirect, as the increase in lipogenesis preceded the increase in ACBP. The significance of this finding is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.