ForewordThe Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m 2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors.This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime 1 . We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.The Pierre Auger Collaboration 1 As a result of continuing R&D, slight changes have been implemented in the baseline design since this Report was written. These changes will be documented in a forthcoming Technical Design Report. ix x Executive Summary Present Results from the Pierre Auger ObservatoryMeasurements of the Auger Observatory have dramatically advanced our understanding of ultra-high energy cosmic rays. The suppression of the flux around 5×10 19 eV is now confirmed without any doubt. Strong limits have been placed on the photon and neutrino components of the flux indicating that "top-down" source processes, such as the decay of superheavy particles, cannot account for a significant part of the observed particle flux. A largescale dipole anisotropy of ∼7% amplitude has been found for energies above 8×10 18 eV. In addition there is also an indication of the presence of a large scale anisotropy below the ankle. Particularly exciting is the observed behavior of the depth of shower maximum with energy, which changes in an unexpected, non-trivial way. Around 3×10 18 eV it shows a distinct change of slope with energy, and the shower-to-shower variance decreases. Interpreted with the leading LHC-tuned shower models, this implies a gradual shift to a heavier composition. A number of fundamentally different astrophysical model scenarios have been developed to describe this evolution. The high degree of isotropy observed in numerous tests of the small-scale angular distribution of UHECR above 4×10 19 eV is remarkable, challenging original expectations that assumed only a few cosmic ray sources with a light composition at the highest energies. Interestingly, the largest departures from isotropy are observed for cosmic rays with E > 5.8×10 19 eV in ∼20 • sky-windows. Due to a duty cycle of ∼15% of the fluorescence telescopes, the data on the depth of shower maximum extend only up to the flux suppression region, i.e. 4×10 19 eV. Obtaining more information on the composition of cosmic rays at higher energies will provide crucial means to discriminate between the model classes and to understand the origin of the observed flux suppre...
Over the past 20 years, KASCADE and its extension KASCADE-Grande were dedicated to measure high-energy cosmic rays with primary energies of 100 TeV to 1 EeV. The data accumulation was fully completed and all experimental components were dismantled, though the analysis of the high-quality data is still continued. E.g., we investigated the validity of the hadronic interaction model of the new SIBYLL version 2.3c. We also published a new result of a search for large-scale anisotropies performed with the KASCADE-Grande data. Investigation of the attenuation length of the muon in the atmosphere is also updated with the predictions of the SIBYLL 2.3 interaction model. We investigated, in addition, the muon content of high-energy air showers and compared them to all post-LHC interaction models. In this contribution, the new and updated results from KASCADE-Grande will be presented. An update of the web-based data center KCDC offering the original scientific data from KASCADE-Grande to the public will be briefly discussed as well.
The spin-spin dependence of the total cross section of ' Co for neutrons was measured at seven energies. A polarized neutron beam with energies of 8.2, 11.1, 12.8, and 14.1 MeV from the 'H{d, n)'He reaction and of 23.0, 27.5, and 30.6 MeV from the 'H(d, n)'He reaction was transmitted through a cobalt sample. The cobalt target was cooled with a 'He-'He dilution refrigerator and polarized in a magnetic field. The transmission rates of the neutrons were compared for parallel and antiparallel spin orientations. The values obtained for the spin-spin cross section are much smaller than those found below 3 MeV. Deduced strengths of spin-spin terms in the optical model are in the range of 1 MeV. This is of the same order of magnitude as estimated from microscopic calculations.NUCLEAR REACTIONS 5 Co +~, E"=S -31 MeV; measured spin-spin dependent transmission; deduced o";deduced optical model spin-spin terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.