The room-temperature (300 K), pulsed mode operation of a GaAs-based quantum-cascade laser is presented. This has been achieved by the use of a GaAs/Al0.45Ga0.55As heterostructure which offers the maximum Γ–Γ band offset (390 meV) for this material system without inducing the presence of indirect barrier states. Thus, better electron confinement is achieved, countering the loss of injection efficiency with temperature. These devices show ∼100 K increase in operating temperature with respect to equivalent designs using an GaAs/Al0.33Ga0.67As heterostructure. We also measure 600 mW peak power at 233 K a temperature readily accessible by Peltier coolers.
The influence of doping density on the performance of GaAs∕AlGaAs quantum-cascade lasers is presented. A fully self-consistent Schrödinger–Poisson analysis, based on a scattering rate equation approach, was employed to simulate the above threshold electron transport in laser devices. V-shaped local field domain formation was observed, preventing resonant subband level alignment in the high pumping-current regime. The resulting saturation of the maximal current, together with an increase of the threshold current, limits the dynamic working range under higher doping. Experimental measurements are in good agreement with the theoretical predictions.
We measured the electronic and lattice temperatures in steady-state operating GaAs/AlGaAs\ud
quantum-cascade lasers, by means of microprobe band-to-band photoluminescence. Thermalized\ud
hot-electron distributions with temperatures up to 800 K are established. The comparison of our data\ud
with the analysis of the temperature dependence of device optical performances shows that the\ud
threshold current is determined by the lattice temperature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.