Discriminant analysis has been used for decades to extract features that preserve class separability. It is commonly defined as an optimization problem involving covariance matrices that represent the scatter within and between clusters. The requirement that one of these matrices be nonsingular limits its application to data sets with certain relative dimensions. We examine a number of optimization criteria, and extend their applicability by using the generalized singular value decomposition to circumvent the nonsingularity requirement. The result is a generalization of discriminant analysis that can be applied even when the sample size is smaller than the dimension of the sample data. We use classification results from the reduced representation to compare the effectiveness of this approach with some alternatives, and conclude with a discussion of their relative merits.
Abstract-An optimization criterion is presented for discriminant analysis. The criterion extends the optimization criteria of the classical Linear Discriminant Analysis (LDA) through the use of the pseudoinverse when the scatter matrices are singular. It is applicable regardless of the relative sizes of the data dimension and sample size, overcoming a limitation of classical LDA. The optimization problem can be solved analytically by applying the Generalized Singular Value Decomposition (GSVD) technique. The pseudoinverse has been suggested and used for undersampled problems in the past, where the data dimension exceeds the number of data points. The criterion proposed in this paper provides a theoretical justification for this procedure. An approximation algorithm for the GSVD-based approach is also presented. It reduces the computational complexity by finding subclusters of each cluster and uses their centroids to capture the structure of each cluster. This reduced problem yields much smaller matrices to which the GSVD can be applied efficiently. Experiments on text data, with up to 7,000 dimensions, show that the approximation algorithm produces results that are close to those produced by the exact algorithm.
.A new algorithm for downdating a QR decomposition is presented . We show that, when the columns in the Q factor from the Modified Gram-Schmidt QR decomposition of a matrix X are exactly orthonormal, the Gram-Schmidt downdating algorithm for the QR decomposition of X is equivalent to downdating the full Householder QR decomposition of the matrix X augmented by an n x n zero matrix on top . Using this relation, we derive an algorithm that improves the Gram-Schmidt downdating algorithm when the columns in the Q factor are not orthonormal . Numerical test results show that the new algorithm produces far more accurate results than the GramSchmidt downdating algorithm for certain ill-conditioned problems .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.