Auditory neuropathy (AN) was initially described as impairment of auditory neural function, with preserved cochlear hair cell function. In this report, 67 patients with audiological and neurophysiological criteria for hearing loss due to auditory neuropathy are described. Reviewing this large body of patients, AN appears to consist of a number of varieties, with different etiologies and sites affected. All varieties share a relatively spared receptor function, and an impaired neural response, with diminished ability to follow fast temporal changes in the stimulus, but different varieties in this general scheme can be distinguished. Analyses of the clinical features indicate that auditory neuropathies vary in several measures including age of onset, presence of peripheral neuropathy, etiology, and behavioral and physiological measures of auditory function. The sites affected along the peripheral auditory pathway may include dysfunction of the outer hair cells, the synapse between hair cell and auditory nerve, and the auditory nerve fibers, with myelin as well as axonal impairments contributing to the disorder.
The complex of five waves, which are the responses to click stimuli of the auditory nerve and the brainstem auditory nuclei, were recorded in ten human subjects by means of earlobe and scalp electrodes. The rate of the stimuli was varied from 5/s to 80/s and their intensity was varied over a 70 dB intensity range in order to study the rate and intensity functions of each of the response components. With increasing click intensity, the amplitude of the first wave (generated by the auditory nerve) increased proportionally while the amplitudes of the later waves (generated by the brainstem auditory nuclei) reached their maximum amplitudes at intermediate click levels (saturation), and at high intensities occasionally even decreased in amplitude. The latency of each of the waves decreased by similar amounts as the intensity was increased. With increasing click rates, the amplitude of the first wave decreased the most, while there were smaller effects on the amplitude of the later waves. There was no effect of click rate on the latency of the first wave, but the latency of the later waves increased with click rate, the effect being greater on the later waves. In the rate functions, the latency change of a wave was greater than that of the waves preceding it (accumulative effect). These results are explained by overlapping convergence and divergence in the ascending auditory pathway. These results support the notion that the principal component of each wave is activated by the principal component of the previous wave. These results may explain the relative ease with which several workers record the fourth wave of the complex, and their preference for this response.
Eight whole-night polysomnographic recordings were conducted in a 33-year-old man with a localized pontine lesion inflicted by a shrapnel fragment. Sleep recordings revealed no rapid eye movement (REM) sleep in 3 nights, and markedly reduced REM sleep in 5 nights; non-rapid eye movement (NREM) sleep was normal. In spite of marked reduction of REM sleep, the patient conducted a normal life and had none of the typical symptoms of REM-sleep deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.