Doubly peaked density distribution is expected not only to affect the plasma-wetted area at divertor plates, but also to correlate with the upstream density profile and hence characteristics of MHD activities in tokamak plasmas [H. Q. Wang et al., Phys. Rev. Lett. 124, 195002 (2020)]. Clarifying its origination is important to understand the compatibility between power/particle exhausts in divertor and high-performance core plasmas which is required by present-day and future tokamak devices. In this paper, we analyzed the double-peak density profile appeared in the modeling during the physics design phase of the new lower tungsten divertor for EAST by using comprehensive 2D SOLPS-ITER code package including full drifts and currents, with concentrations on unfavorable magnetic field (ion B×∇B drift is directed away from the primary X-point). The results indicate that E×B drift induced by plasma potential gradient near the target, which is closely related to the divertor state, plays essential roles in the formation of double-peak profile at the target: (1) Large enough radial Ep×B drift produces a broadened high-density region; (2) Strong poloidal Er×B drift drives a significant particle sink and creates a valley on the high-density profile. Thus, the simulation results can explain why this kind of doubly peaked density profile is usually observed at the high-recycling divertor regime. In addition, features of the double-peak ion saturation current distribution measured in preliminary experiments testing the new lower tungsten divertor are qualitatively consistent with the simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.