Exact knowledge of the position of a vehicle is a fundamental problem in mobile robot applications. In search for a solution, researchers and engineers have developed a variety of systems, sensors, and techniques for mobile robot positioning. This paper provides a review of relevant mobile robot positioning technologies. The paper defines seven categories for positioning systems: 1. Odometry; 2. Inertial Navigation; 3. Magnetic Compasses; 4. Active Beacons; 5. Global Positioning Systems; 6. Landmark Navigation; and 7. Model Matching. The characteristics of each category are discussed and examples of existing technologies are given for each category. The field of mobile robot navigation is active and vibrant, with more great systems and ideas being developed continuously. For this reason the examples presented in this paper serve only to represent their respective categories, but they do not represent a judgment by the authors. Many ingenious approaches can be found in the literature, although, for reasons of brevity, not all could be cited in this paper. Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
The Mobile Detection Assessment and Response System robotic security program has successfully demonstrated simultaneous control of multiple robots navigating autonomously within an operational warehouse environment. This real-world warehouse installation required adapting a navigational paradigm designed for highly structured environments such as office corridors (with smooth walls and regularly spaced doorways) to a semistructured warehouse environment (with no exposed walls and within which odd-shaped objects unpredictably move about from day to day). A number of challenges, some expected and others unexpected, were encountered during the transfer of the system first to a beta-test/demonstration site and then to an operational warehouse. This paper examines these problems (and others previously encountered) in a historical context of the evolution of navigation and other needed technologies, and the transition of these technologies from the research lab to an operational warehouse environment. A key lesson is that system robustness can only be ensured by exhaustively exercising the system's operational capabilities in a number of diverse environments. This approach helps to uncover latent system hardware deficiencies and software implementation errors not manifested in the initial system hardware or initial development environment, and to identify sensor modes or processing algorithms tuned too tightly to the specific characteristics of the initial development environment.
The Mobile Detection Assessment Response System (MDARS) provides physical security for Department of Defense bases and depots using autonomous unmanned ground vehicles (UGVs) to patrol the site while operating payloads for intruder detection and assessment, barrier assessment, and product assessment. MDARS is in the System Development and Demonstration acquisition phase and is currently undergoing developmental testing including an Early User Appraisal (EUA) at the Hawthorne Army Depot, Nevada -the world's largest army depot.The Multiple Resource Host Architecture (MRHA) allows the human guard force to command and control several MDARS platforms simultaneously. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. The MRHA also interfaces to remote resources to automate legacy physical devices such as fence gate controls, garage doors, and remote power on/off capability for the MDARS patrol units.This paper provides an overview and history of the MDARS program and control station software with details on the installation and operation at Hawthorne Army Depot, including discussions on scenarios for EUA excursions. Special attention is given to the MDARS technical development strategy for spiral evolutions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.