The Mobile Detection Assessment Response System (MDARS) provides physical security for Department of Defense bases and depots using autonomous unmanned ground vehicles (UGVs) to patrol the site while operating payloads for intruder detection and assessment, barrier assessment, and product assessment. MDARS is in the System Development and Demonstration acquisition phase and is currently undergoing developmental testing including an Early User Appraisal (EUA) at the Hawthorne Army Depot, Nevada -the world's largest army depot.The Multiple Resource Host Architecture (MRHA) allows the human guard force to command and control several MDARS platforms simultaneously. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. The MRHA also interfaces to remote resources to automate legacy physical devices such as fence gate controls, garage doors, and remote power on/off capability for the MDARS patrol units.This paper provides an overview and history of the MDARS program and control station software with details on the installation and operation at Hawthorne Army Depot, including discussions on scenarios for EUA excursions. Special attention is given to the MDARS technical development strategy for spiral evolutions.
The Mobile Detection Assessment Response System (MDARS) is a joint Army-Navy development effort to field mobile robots at Department of Defense (DoD) sites for physical security and automated inventory missions. MDARS was initiated in 1989 to improve the effectiveness of a shrinking guard force, but was quickly expanded to address the intensive manpower requirements associated with accounting for high-dollar and critical DoD assets. Two types of autonomous platforms patrol inside warehouses (Interior) and outside of storage facilities (Exterior), carrying payloads for intruder detection, inventory assessment, and barrier assessment. The MDARS console for command and control is based upon the Multiple Resource Host Architecture (MRHA), which allows a single human guard to oversee and monitor up to 255 platforms and/or unmanned sensors.Recent improvements to satisfy mission requirements for physical security have expanded the system capabilities to enable force-protection missions in tactical situations. Rapid-prototyping approaches have facilitated investigations into aiming and firing less-than-lethal weapons on an unmanned platform, deployment of a marsupial capability to carry smaller robots, and seamless alldigital communication between unmanned sensors and unmanned ground and air vehicles. This paper provides an overview of the MDARS evolutionary development approach (using mobile robots and fixed sensors) for both physical security and force protection missions. Special treatment is provided on feedback from developmental tests at Aberdeen Proving Grounds, MD, and operational tests at Defense Distribution Depot Susquehanna PA. Report Documentation Page Form Approved OMB No. 0704-0188Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-thanlethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems.The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations.This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a forceon-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.
Unmanned vehicles perform critical mission functions. Today, fielded unmanned vehicles have restricted operations as a single asset controlled by a single operator. In the future, however, it is envisioned that multiple unmanned air, ground, surface and underwater vehicles will be deployed in an integrated unmanned (and "manned") team fashion in order to more effectively execute complex mission scenarios. To successfully facilitate this transition from single platforms to an integrated unmanned system concept, it is essential to first develop the required base technologies for multi-vehicle mission requirements, as well as test and evaluate such technologies in tightly controlled field experiments. Under such conditions, advances in unmanned technologies and associated system configurations can be empirically evaluated and quantitatively measured against relevant performance metrics.A series of field experiments will be conducted for unmanned force protection system applications. A basic teaming scenario is: Unmanned aerial vehicles (UAVs) detect a target of interest on the ground; the UAVs cue unmanned ground vehicles (UGVs) to the area; the UGVs provide on-ground evaluation and assessment; and the team of UAVs and UGVs execute the appropriate level of response. This paper details the scenarios and the technology enablers for experimentation using unmanned protection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.