In March of last year, engineers from SPAWAR Systems Center, San Diego (SSC San Diego) and Allied Aerospace (formerly Micro Craft, Inc.) conducted the first known launch of a Vertical Takeoff and Landing Unmanned Air Vehicle (UAV) from an Unmanned Ground Vehicle (UGV) in Holtville, California (2002). The launch concluded a week-long demonstration to the Defense Advanced Research Projects Agency as part of the U.S. Army's Future Combat Systems Organic Air Vehicle Phase I effort. The launch involved Allied Aerospace's 29-inch Lift Augmented Ducted Fan iSTAR UAV and SSC San Diego's Mobile Detection Assessment Response System-Exterior UGV.SSC San Diego is now pursuing integration efforts in order to increase base security and defense missions by decreasing time and personnel required to maintain a UAV during operations. The main project goal is to develop a system that allows a UAV to be launched, recovered, and refueled in order to provide force extension through autonomous aerial response. This paper presents an overview of near term mission areas, benefits, and target recipients of the integrated system. It also provides a description of the project plan, including challenges faced and lessons learned, in order to inspire further integration ideas and efforts with existing unmanned systems. Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. Report Documentation Page
Small unmanned aerial vehicles (UAVs) are hindered by their limited payload and duration. Consequently, UAVs spend little time in their area of operation, returning frequently to base for refueling. The effective payload and duration of small UAVs is increased by moving the support base closer to the operating area; however this increases risk to personnel. Performing the refueling operations autonomously allows the support base to be located closer to the operating area without increasing risk to personnel. Engineers at SPAWAR Systems Center San Diego (SSC San Diego) are working to develop technologies for automated launch, recovery, refueling, rearming, and re-launching of small UAVs. These technologies are intended to provide forward-refueling capabilities by teaming small UAVs with large unmanned ground vehicles (UGVs). The UGVs have larger payload capacities so they can easily carry fuel for the UAVs in addition to their own fuel and mission payloads. This paper describes a prototype system that launched and recovered a remotely-piloted UAV from a UGV and performed automated refueling of a UAV mockup.
The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-thanlethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems.The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations.This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a forceon-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.
This paper describes the latest efforts to develop an Automated UAV Mission System (AUMS) for small vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). In certain applications such as force protection, perimeter security, and urban surveillance a VTOL UAV can provide far greater utility than fixed-wing UAVs or ground-based sensors. The VTOL UAV can operate much closer to an object of interest and can provide a hover-and-stare capability to keep its sensors trained on an object, while the fixed wing UAV would be forced into a higher altitude loitering pattern where its sensors would be subject to intermittent blockage by obstacles and terrain.The most significant disadvantage of a VTOL UAV when compared to a fixed-wing UAV is its reduced flight endurance. AUMS addresses this disadvantage by providing forward staging, refueling, and recovery capabilities for the VTOL UAV through a host unmanned ground vehicle (UGV), which serves as a launch/recovery platform and service station. The UGV has sufficient payload capacity to carry UAV fuel for multiple launch, recovery, and refuel iterations. The UGV also provides a highly mobile means of forward deploying a small UAV into hazardous areas unsafe for personnel, such as chemically or biologically contaminated areas. Teaming small UAVs with large UGVs can decrease risk to personnel and expand mission capabilities and effectiveness.There are numerous technical challenges being addressed by these development efforts. Among the challenges is the development and integration of a precision landing system compact and light enough to allow it to be mounted on a small VTOL UAV while providing repeatable landing accuracy to safely land on the AUMS. Another challenge is the design of a UGV-transportable, expandable, self-centering landing pad that contains hardware and safety devices for automatically refueling the UAV. A third challenge is making the design flexible enough to accommodate different types of VTOL UAVs, such as the AAI iSTAR ducted-fan vehicle and small helicopter UAVs. Finally, a common command-and-control architecture which supports the UAV, UGV, and AUMS must be developed and interfaced with these systems to allow fully autonomous collaborative behaviors.Funded by the Joint Robotics Program, AUMS is part of a joint effort with the Air Force Research Laboratory and the Army Missile Research Development and Engineering Command. The objective is to develop and demonstrate UGV-UAV teaming concepts and work with the warfighter to ensure that future upgrades are focused on operational requirements. This paper describes the latest achievements in AUMS development and some of the military program and first responder situations that could benefit from this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.