Since 2004, NASA has been working to return to the Moon. In contrast to the Apollo missions, two key objectives of the current exploration program is to establish significant infrastructure and an outpost. Achieving these objectives will enable long-duration stays and long-distance exploration of the Moon. To do this, robotic systems will be needed to perform tasks which cannot, or should not, be performed by crew alone. In this paper, we summarize our work to develop "utility robots" for lunar surface operations, present results and lessons learned from field testing, and discuss directions for future research.
We are studying how "robotic follow-up" can improve future planetary exploration. Robotic follow-up, which we define as augmenting human field work with subsequent robot activity, is a field exploration technique designed to increase human productivity and science return. To better understand the benefits, requirements, limitations and risks associated with this technique, we are conducting analog field tests with human and robot teams at the Haughton Crater impact structure on Devon Island, Canada. In this paper, we discuss the motivation for robotic follow-up, describe the scientific context and system design for our work, and present results and lessons learned from field testing.
By 2020, NASA plans to return to the Moon with a new series of regularly spaced surface missions. Crewed missions will initially be "extended sortie" (e.g., 1-2 weeks). During the first few years of the lunar campaign, humans will be on the Moon less than 10% of the time. During the 90% of time between crew visits, robots could perform tasks under ground control. This paper presents the system design for a prototype robotic recon robot and ground control approach, as well as a terrestrial analog field test designed to assess the utility of recon for augmenting and assisting human exploration of a lunar-like environment. Results are presented for recent field testing of the reconnaissance robot in northern Arizona.
In March of last year, engineers from SPAWAR Systems Center, San Diego (SSC San Diego) and Allied Aerospace (formerly Micro Craft, Inc.) conducted the first known launch of a Vertical Takeoff and Landing Unmanned Air Vehicle (UAV) from an Unmanned Ground Vehicle (UGV) in Holtville, California (2002). The launch concluded a week-long demonstration to the Defense Advanced Research Projects Agency as part of the U.S. Army's Future Combat Systems Organic Air Vehicle Phase I effort. The launch involved Allied Aerospace's 29-inch Lift Augmented Ducted Fan iSTAR UAV and SSC San Diego's Mobile Detection Assessment Response System-Exterior UGV.SSC San Diego is now pursuing integration efforts in order to increase base security and defense missions by decreasing time and personnel required to maintain a UAV during operations. The main project goal is to develop a system that allows a UAV to be launched, recovered, and refueled in order to provide force extension through autonomous aerial response. This paper presents an overview of near term mission areas, benefits, and target recipients of the integrated system. It also provides a description of the project plan, including challenges faced and lessons learned, in order to inspire further integration ideas and efforts with existing unmanned systems. Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. Report Documentation Page
Current man-portable robotic systems are too heavy for troops to pack during extended missions in rugged terrain and typically require more user support than can be justified by their limited return in force multiplication or improved effectiveness. As a consequence, today's systems appear organically attractive only in life-threatening scenarios, such as detection of chemical/biological/radiation hazards, mines, or improvised explosive devices. For the long term, significant improvements in both functionality (i.e., perform more useful tasks) and autonomy (i.e., with less human intervention) are required to increase the level of general acceptance and, hence, the number of units deployed by the user. In the near term, however, the focus must remain on robust and reliable solutions that reduce risk and save lives. This paper describes ongoing efforts to address these needs through a spiral development process that capitalizes on technology transfer to harvest applicable results of prior and ongoing activities throughout the technical community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.