The aim of the present research is to check the capability of the equivalent material concept (EMC) combined with the J‐integral failure criterion, called EMC‐J criterion, in predicting the load‐carrying capacity (LCC) of U‐notched ductile aluminium plates subjected to tension by considering the 2 moderate and large‐scale yielding regimes. For this purpose, first, a set of experimental results on LCC of 2 groups of thin U‐notched rectangular plates made of Al 7075‐T6 and Al 6061‐T6 are gathered from the recent literature. Then, because the Al 7075‐T6 and Al 6061‐T6 plates have ductile behaviour, EMC is employed to avoid performing elastic‐plastic failure analysis for LCC predictions. Up to now, different failure models in the context of the linear‐elastic notch fracture mechanics have been successfully utilized in combination with EMC for ductile failure prediction of notched members. However, this is the first time in this research that J‐integral, as a well‐known brittle failure criterion, is linked to EMC for predicting LCC of the U‐notched rectangular aluminium plates. Finally, it is shown that EMC‐J criterion can predict well the experimental results of tensile LCC.
In the current study, the failure behavior of retrofitted steel structures was studied experimentally and theoretically with steel/carbon fiber reinforced polymer (CFRP) double strap joints (DSJs) under quasi-static tensile loading. A series of DSJs with different bonding lengths are also considered and examined to experimentally assess the effective bond length. To predict the failure load values of the tested specimens, a new stress-based method, namely the point stress (PS) method is proposed. Although some theoretical predictive modelling for the strength between steel/CFRP joints under various loading conditions has been presented, in this work by using the new proposed approach, one can calculate rapidly and conveniently the failure loads of the steel/CFRP specimens. Furthermore, to assess the validity of the new proposed method, further experimental data on steel/CFRP DSJs available in the open literature are predicted using the PS method. Finally, it was found that a good agreement exists between the experimental results and the theoretical predictions based on the PS method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.