Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.
The incorporation of lipids into the copepod Acartia tonsa and its eggs was measured when it was fed either a bacterivorous ciliate (Pleuronema sp.) or a diatom (Thalassiosira weissfogii). Egg production was lo-fold higher on the diatom diet, whereas hatch success of eggs was the same for algal and ciliate diets. Adult copepods fed diatoms contained more total fatty acid and sterols than copepods fed the ciliate diet, and individual lipids reflected the dietary source. Eggs from diatom-fed copepods had fewer fatty acids but more sterols than eggs from copepods on a ciliate diet. Ciliate-fed copepods and their eggs contained significant amounts of odd chain-length and branched fatty acids diagnostic of bacteria. These fatty acids, in particular the iso C,, and C17, were also elevated in ciliates feeding on bacteria in culture, suggesting the direct transfer of bacterial fatty acids from ciliates to copepods and their eggs. We also observed the assimilation of tetrahymanol, a triterpenoid alcohol specific to ciliates, into adults and eggs when copepods were fed a ciliate diet. Tetrahymanol accounted for 6.6 + 1.9% of total neutral lipids in adults and 35.4 + 6.5% in eggs. These results suggest that bacterivorous ciliates may not provide copepods with adequate nutritional requirements for long-term survival, but that lipids unique to bacteria and ciliates can be assimilated by and may provide useful tracers of consumption by copepods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.