Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumorspecific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
BackgroundCancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.MethodsHere, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.ResultsPatients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.ConclusionsThese results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases.
Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These “causality challenges” hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate “personal mechanism signatures” of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of “Oncogenic FAIME Features of HNSCC” (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p<0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p<0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.