The main purpose of the current research was to develop an abbreviated form of the Dyadic Adjustment Scale (DAS) with nonparametric item response theory. The authors conducted 5 studies, with a total participation of 8,256 married or cohabiting individuals. Results showed that the item characteristic curves behaved in a monotonically increasing function for all items of the brief 4-item version of the DAS (DAS-4). The DAS-4 proved to be informative at all levels of couple satisfaction. Compared with the 32-item version of the DAS (DAS-32), it was as effective in predicting couple dissolution and was significantly less contaminated by socially desirable responding. In addition, structural equation modeling demonstrated that the underlying latent construct measured by the DAS-4 was very stable over a 2-year period. This brief version has the advantage of being less time consuming and constitutes a promising alternative to the original DAS-32 for clinicians and researchers.
To facilitate rapid, unbiased, differential diagnosis of infectious diseases, we designed GreeneChipPm, a panmicrobial microarray comprising 29,455 sixty-mer oligonucleotide probes for vertebrate viruses, bacteria, fungi, and parasites. Methods for nucleic acid preparation, random primed PCR amplification, and labeling were optimized to allow the sensitivity required for application with nucleic acid extracted from clinical materials and cultured isolates. Analysis of nasopharyngeal aspirates, blood, urine, and tissue from persons with various infectious diseases confirmed the presence of viruses and bacteria identified by other methods, and implicated Plasmodium falciparum in an unexplained fatal case of hemorrhagic feverlike disease during the Marburg hemorrhagic fever outbreak in Angola in 2004–2005.
Extraction of relevant clinical information and UMLS coding were accomplished using a method based on NLP. The method appeared to be comparable to or better than six experts. The advantage of the method is that it maps text to codes along with other related information, rendering the coded output suitable for effective retrieval.
We aimed to identify peripheral blood mononuclear cell (PBMC) gene expression profiles predictive of poor outcomes in idiopathic pulmonary fibrosis (IPF) by performing microarray experiments of PBMCs in discovery and replication cohorts of IPF patients. Microarray analyses identified 52 genes associated with transplant-free survival (TFS) in the discovery cohort. Clustering the microarray samples of the replication cohort using the 52-gene outcome-predictive signature distinguished two patient groups with significant differences in TFS. We studied the pathways associated with TFS in each independent microarray cohort and identified decreased expression of “The costimulatory signal during T cell activation” Biocarta pathway and, in particular, the genes CD28, ICOS, LCK, and ITK, results confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). A proportional hazards model, including the qRT-PCR expression of CD28, ICOS, LCK, and ITK along with patient’s age, gender, and percent predicted forced vital capacity (FVC%), demonstrated an area under the receiver operating characteristic curve of 78.5% at 2.4 months for death and lung transplant prediction in the replication cohort. To evaluate the potential cellular source of CD28, ICOS, LCK, and ITK expression, we analyzed and found significant correlation of these genes with the PBMC percentage of CD4+CD28+ T cells in the replication cohort. Our results suggest that CD28, ICOS, LCK, and ITK are potential outcome biomarkers in IPF and should be further evaluated for patient prioritization for lung transplantation and stratification in drug studies.
BackgroundCancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.MethodsHere, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.ResultsPatients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.ConclusionsThese results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.