In the past decade, episodes of severe air pollution, known as the “black cloud,” have occurred in Cairo, Egypt, in the early autumn. In this study, data from the Moderate Resolution Imaging Spectrometer (MODIS) and the Multi‐angle Imaging Spectroradiometer (MISR) are used with meteorological data and trajectory analyses to determine the cause of these events. MODIS fire counts put the source as the burning of agricultural waste after harvest season in the Nile delta region. Synchronous MISR data show that these fires create low altitude (<500 m) plumes of smoke and aerosols which flow over Cairo in a few hours, as confirmed by Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT) forward trajectory analyses. Much of the burning occurs at night, when an inversion constrains the plumes to remain in the boundary layer (BL). Convection during the day raises the BL, dispersing these smoke particles until the next night.
The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR) data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.
Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1–13) and temperature (45–80°C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.