Here we report the first measure in radio emission of differential rotation as a function of height in the solar corona. This is derived from the disk-integrated simultaneous daily measurements of solar flux at 11 radio frequencies in the range of 275-2800 MHz. Based on the model calculations, these radio emissions originate from the solar corona in the estimated average height range of ∼ km above the photosphere. The 4 (6-15) # 10 investigations indicate that the sidereal rotation period at the highest frequency (2800 MHz), which originates from the lower corona around km, is ∼24.1 days. The sidereal rotation period decreases with height to 4 6 # 10 ∼23.7 days at the lower frequency (405 MHz), which originates at ∼ km. It is difficult to identify clearly 4 13 # 10 the rotational modulation at 275 MHz, perhaps because these emissions are significantly affected by the turbulence in the intervening medium. Since these investigations are based on disk-integrated solar flux at radio frequencies, it is difficult to say whether these systematic variations in sidereal rotation period are partly due to the latitudinal differential rotation of the solar corona. It will be interesting to investigate this possibility in the future.
Abstract. The Ondřejov radiospectrograph operating in the 0.8-2.0 GHz frequency range recorded in recent years (1998)(1999)(2000), three (August 10, 1998; August 17, 1999; June 27, 2000) unique bursts with rapid frequency variations (lace bursts) lasting for several minutes. On August 17, 1999, the same burst was recorded simultaneously by the Brazilian Solar Spectroscope in the 1.0-2.5 GHz frequency range. The frequency variations of these bursts in four time intervals were analyzed by the Fourier method and power-law spectra with power-law indices close to -2 were found. The Fourier spectra show the presence of frequency variations in the 0.01-3.0 Hz interval which indicate fast changes of plasma parameters in the radio source. Due to the similarities in the line features of these bursts with zebra pattern lines, a model similar to that of the zebra pattern was suggested. The model radio spectra, computed using this model with a turbulent state of the solar flare atmosphere, are similar to those observed by the radiospectrographs.
We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using the SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P = 10-83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the coronal magnetic null point. We estimate the plasma parameters in the studied radio sources and find them consistent with the presented scenario involving the coronal magnetic null point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.