Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration, and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to study a functional cross-talk between TGF-β and PDGFRα signaling pathways in FAPs’ fate. Here, we show that the number of FAPs correlates with TGF-β levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the stromal/fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-β signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts, and in two related mesenchymal/fibroblast cell lines. Moreover, TGF-β promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-β impairs the expression of PDGFRα-dependent immediate early genes in a TGF-BR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-β-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation, and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-β and PDGFRα signaling pathways that is involved in regulating the biology of FAPs/MSCs.
The cardiac stroma contains multipotent mesenchymal progenitors. However, lineage relationships within cardiac stromal cells are still poorly understood. Here, we identify heartresident PDGFRa + Sca-1 + cells as cardiac Fibro/Adipogenic Progenitors (cFAPs) and show that they respond to ischemic damage by generating fibrogenic cells. Pharmacological blockade of this differentiation step with an anti-fibrotic tyrosine kinase inhibitor decreases post-myocardial infarction (MI) remodeling and leads to improvements in heart function. In the undamaged heart, activation of cFAPs through lineage-specific deletion of the quiescence factor Hic1 reveals additional pathogenic potential, causing fibro-fatty infiltration of the myocardium and driving major pathological features of Arrhythmogenic Cardiomyopathy (AC). Highlights• A subpopulation of PDGFRa + , Sca-1 + cells, previously considered to be a sub-type of cardiac fibroblasts, are multipotent mesenchymal progenitors,• Cardiac damage triggers the differentiation of PDGFRa + Sca-1 + cells into Sca-1cells expressing a fibrogenic transcriptional programme,• Blockade of the cFAP-to-fibroblast transition by Nilotinib ameliorated cardiac dysfunction post-MI and modulated cardiac remodelling.• Studies performed on a model of experimentally-induced AC confirmed that cFAPs are a source of both cardiac fibroblasts and adipocytes in vivo.• Conversely, in the undamaged heart, activation of cFAPs by means of lineage-specific deletion of transcription factor Hic1, resulted in fibro/fatty cardiac degeneration and pathological alterations reminiscent of AC. Collectively, our findings show that a proportion of what are commonly termed "fibroblasts" are actually multipotent .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.