Damage to skin collagen and elastin (extracellular matrix) is the hallmark of long-term exposure to solar ultraviolet irradiation, and is believed to be responsible for the wrinkled appearance of sun-exposed skin. We report here that matrix-degrading metalloproteinase messenger RNAs, proteins and activities are induced in human skin in vivo within hours of exposure to ultraviolet-B irradiation (UVB). Induction of metalloproteinase proteins and activities occurred at UVB doses well below those that cause skin reddening. Within minutes, low-dose UVB upregulated the transcription factors AP-1 and NF-kappa B, which are known to be stimulators of metalloproteinase genes. All-trans retinoic acid, which transrepresses AP-1 (ref. 8), applied before irradiation with UVB, substantially reduced AP-1 and metalloproteinase induction. We propose that elevated metalloproteinases, resulting from activation of AP-1 and NF-kappa B by low-dose solar irradiation, degrade collagen and elastin in skin. Such damage, if imperfectly repaired, would result in solar scars, which through accumulation from a lifetime of repeated low-dose sunlight exposure could cause premature skin ageing (photoageing).
Human skin is exposed daily to solar ultraviolet (UV) radiation. UV induces the matrix metalloproteinases collagenase, 92-kD gelatinase, and stromelysin, which degrade skin connective tissue and may contribute to premature skin aging (photoaging). Pretreatment of skin with all-trans retinoic acid (tRA) inhibits UV induction of matrix metalloproteinases. We investigated upstream signal transduction pathways and the mechanism of tRA inhibition of UV induction of matrix metalloproteinases in human skin in vivo. Exposure of human skin in vivo to low doses of UV activated EGF receptors, the GTP-binding regulatory protein p21Ras, and stimulated mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38. Both JNK and p38 phosphorylated, and thereby activated transcription factors c-Jun and activating transcription factor 2 (ATF-2), which bound to the c-Jun promoter and upregulated c-Jun gene expression. Elevated c-Jun, in association with constitutively expressed c-Fos, formed increased levels of transcription factor activator protein (AP) 1, which is required for transcription of matrix metalloproteinases. Pretreatment of human skin with tRA inhibited UV induction of c-Jun protein and, consequently, AP-1. c-Jun protein inhibition occurred via a posttranscriptional mechanism, since tRA did not inhibit UV induction of c-Jun mRNA. These data demonstrate, for the first time, activation of MAP kinase pathways in humans in vivo, and reveal a novel posttranscriptional mechanism by which tRA antagonizes UV activation of AP-1 by inhibiting c-Jun protein induction. Inhibition of c-Jun induction likely contributes to the previously reported prevention by tRA of UV induction of AP-1-regulated matrix-degrading metalloproteinases in human skin.
We have quantitatively assessed the relation between type I and type III procollagen precursor levels and the severity of clinical photodamage in human skin. Levels of procollagen, pN collagen (collagen without the carbroxypropeptide), and/or pC collagen (collagen without the aminopropeptide) were determined by radioimmunoassay, Western blot, and immunohistology in punch biopsy specimens from mildly and severely photodamaged forearm skin and from sunprotected underarm and buttock skin of the same subjects. Collagen precursor levels in forearm and underarm skin were expressed relative to buttock levels for comparison. In the mildly photodamaged group, collagen precursors in the forearm did not differ from those in the underarm by any measurement, except for type I collagen precursors measured by radioimmunoassay, which were reduced 16%. In severely photodamaged forearm skin, both type I and type III collagen precursor levels, measured by radioimmunoassay, were significantly reduced (approximately 40%). Western analysis revealed similar significant reductions in type I and type III collagen precursor levels in severely photodamaged forearm skin compared with the sun-protected underarm. Immunohistology localized both type I and III pN collagens predominantly to the extracellular papillary dermis. Relative staining intensities of type I and type III pN collagen were also significantly reduced in severely photodamaged forearm skin. Multiple linear regression modeling of all data demonstrated that reductions in collagen precursor levels were significantly correlated (p < 0.03) with the severity of photodamage, but not with chronologic age. These data demonstrate, by three independent methods, coordinate reductions of both type I and type III collagen precursors in photodamaged human skin, and the degree of reduction correlated with the degree of photodamage. It is likely that such changes in collagen precursors lead to reduced levels and/or altered organization of fibrillar collagen, and thus may contribute to the wrinkled appearance of photodamaged human skin.
Abstract. A stay-green phenotype enhances the adaptation of sorghum to terminal drought conditions, although the underlying physiological mechanisms leading to the expression of stay-green remain unclear. Differences in tillering and leaf area at anthesis, transpiration efficiency (TE), water extraction, harvest index (HI) and yield under both terminal drought and fully-irrigated conditions were assessed in 29 introgression lines (IL) developed targeting stay-green QTLs Stg1, Stg2, Stg3, Stg4, StgA, and StgB in S35 background, and 16 IL developed targeting Stg1, Stg3, Stg4, and StgB in R16
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.