During the past few decades, vertical farming has attracted a lot of interest as an alternative food production method. Vertical farms use engineered growth environments and hydroponic cultivation techniques for growing plants indoors. One of the important factors in vertical farming for the cultivation of different plants is the amount of nutrients, which can be measured as electrical conductivity (EC). Studying the optimal EC is important for avoiding nutrient loss and deficiency in vertical farms. In this study, we investigated the effect of five EC levels (2, 1.2, 0.9, 0.7, and 0.5 dS m−1) of Hoagland nutrient solution on the growth and development of basil cultivar ‘Emily’ and lettuce cultivar ‘Batavia-Caipira’. During the study, the environmental parameters were kept fixed using an automatic dosing machine. The experiment was done in automatic vertical farms using the hydroponic ebb–flow cultivation technique with a temperature of 20 ± 1 °C, relative humidity of 50–60%, CO2 concentration of 450 ppm, pH = 6, the PPFD (photosynthetic photon flux density) of 215 ± 5.5 μmol m−2 s−1, and the photoperiod of 16:8 h (day/night). Each treatment was replicated four times. We studied the effects on several growth parameters (including the dry and fresh weight of leaves and roots, number of leaves, and leaf area) as well as the chlorophyll and nitrogen concentration of the leaves. According to the results, the basil and lettuce growth parameters among the five treatments have been significantly higher in the treatment with EC of 1.2 and 0.9 dS m−1. These EC values are lower than the recommended EC value given as the optimum in the previous studies. However, the concentration of chlorophyll and nitrogen show different trends and were higher in full strength of nutrient solution with EC = 2 dS m−1.
In a greenhouse experiment, the influence of arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices) and water stress [100% field capacity (FC), 75% FC, 50% FC and 25% FC] on maximal quantum yield of photosystem II (PSII) photochemistry (F v /F m ) and some other ecophysiological characteristics of two pistachio cultivar (Pistacia vera cv. Badami-Riz-Zarand and Pistacia vera cv. Qazvini) were investigated.No difference was found in colonization rate between the two arbuscular mycorrhizal fungi (AMF) applied. Water stress reduced the mycorrhizal colonization in both cultivars at the same rate but the difference was significant just with severe water stress level (25% FC). The F v /F m was also adversely affected by water stress from 75% FC downwards in Qazvini cultivar while in Badami, increase in water-stress intensity had no significant effect on this parameter. Gasexchange parameters were decreased with increasing stress intensity and chlorophyll (Chl) pigments were increased with mild water stress (75% FC) compared with control (100% FC) and then decreased with increasing stress intensity. The carotenoids (Car) content increased significantly in the stressed leaves in all water-stress levels irrespective of AMF treatment and cultivar type.The adverse effects of water stress were significantly reduced by AM inoculation and in the most of measured parameters, both AMF had an equal influence except with the intercellular CO 2 concentration (C i ), where G. intraradices was superior. Results obtained from Chl fluorescence probe indicated that inoculated AMF enhanced photochemical efficiency of light reactions of the PSII in intact pistachio leaf tissues both under irrigation and waterstress conditions. Under mild and moderate water stress, mycorrhizal pistachio plants had higher relative Chl and Car content and higher gas-exchange capacity (increased photosynthesis and transpiration rate) but under severe water-stress condition (25% FC), the effects of mycorrhizal treatments were not noticeable. Data obtained in present study emphasized that Qazvini is more tolerant to water stress than Badami because photosynthesis activity in Qazvini was more efficiently protected than in the Badami, as indicated by related parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.