Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5×10 19 W/cm 2 to 3.3×10 20 W/cm 2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10-to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3×10 20 W/cm 2. The experimental results were further supported by two-and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5×10 21 W/cm 2 .
An experimental study of high-order harmonic generation in In, InSb, InP, and InGaP plasmas using femtosecond laser radiation with variable chirp is presented. Intensity enhancement of the 13th and 21st harmonics compared to the neighboring harmonics by a factor of 200 and 10, respectively, is observed. It is shown that the harmonic spectrum from indium-containing plasma plumes can be considerably modified by controlling the chirp of the driving laser pulse.
Strong intensity enhancement or extinction of some single harmonics is observed in high-harmonic generation from 48 fs Ti:sapphire laser pulses propagating through preformed low-excited laser-produced plasmas of various materials (GaAs, Cr, InSb, stainless steel). The intensities of some of the harmonics in the mid- and end-plateau regions vary from ~23-fold enhancement to near disappearance compared with those of the neighboring ones. It is also shown that the observed intensity enhancement (or extinction) can be varied by controlling the chirp of the driving laser radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.