The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It employs commodity graphics hardware and standard CPU's to achieve real-time performance. We present the main considerations in designing the system and the steps of the processing pipeline. Our system extends existing algorithms to meet the robustness and variability necessary to operate out of the lab. To account for the large dynamic range of outdoor videos the processing pipeline estimates global camera gain changes in the feature tracking stage and efficiently compensates for these in stereo estimation without impacting the real-time performance. The required accuracy for many applications is achieved with a twostep stereo reconstruction process exploiting the redundancy across frames. We show results on real video sequences comprising hundreds of thousands of frames.
In this paper we present a new algorithm for computing Maximally Stable Extremal Regions (MSER), as invented by Matas et al. The standard algorithm makes use of a union-find data structure and takes quasi-linear time in the number of pixels. The new algorithm provides exactly identical results in true worst-case linear time. Moreover, the new algorithm uses significantly less memory and has better cache-locality, resulting in faster execution. Our CPU implementation performs twice as fast as a state-of-the-art FPGA implementation based on the standard algorithm.The new algorithm is based on a different computational ordering of the pixels, which is suggested by another immersion analogy than the one corresponding to the standard connected-component algorithm. With the new computational ordering, the pixels considered or visited at any point during computation consist of a single connected component of pixels in the image, resembling a flood-fill that adapts to the grey-level landscape. The computation only needs a priority queue of candidate pixels (the boundary of the single connected component), a single bit image masking visited pixels, and information for as many components as there are grey-levels in the image. This is substantially more compact in practice than the standard algorithm, where a large number of connected components must be considered in parallel. The new algorithm can also generate the component tree of the image in true linear time. The result shows that MSER detection is not tied to the union-find data structure, which may open more possibilities for parallelization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.