The effects of the electroforming polarity on the bipolar resistive switching characteristics in SrTiO3−δ thin films have been investigated. The conduction mechanisms of high resistance state and low resistance state are Poole–Frenkel emission and tunneling, respectively. The temperature dependences of the resistance at high and low resistance state are both semiconductorlike. The impact of the polarity of the electroforming voltage on the resistive switching mechanism and the distribution of defects was discussed. A simple model describing the combination of bulk and the interface effect was proposed to explain the resistive switching in this material.
Solar filament eruptions, flares, and coronal mass ejections (CMEs) are manifestations of drastic releases of energy in the magnetic field, which are related to many eruptive phenomena, from the Earth’s magnetosphere to black hole accretion disks. With the availability of high-resolution magnetograms on the solar surface, observational data-based modeling is a promising way to quantitatively study the underlying physical mechanisms behind observations. By incorporating thermal conduction and radiation losses in the energy equation, we develop a new data-driven radiative magnetohydrodynamic model, which has the capability of capturing the thermodynamic evolution compared to our previous zero-β model. Our numerical results reproduce the major observational characteristics of the X1.0 flare on 2021 October 28 in NOAA active region 12887, including the morphology of the eruption, the kinematics of the flare ribbons, extreme ultraviolet (EUV) radiations, and the two components of the EUV waves predicted by the magnetic stretching model, i.e., a fast-mode shock wave and a slower apparent wave, due to successive stretching of the magnetic field lines. Moreover, some intriguing phenomena are revealed in the simulation. We find that flare ribbons separate initially and ultimately stop at the outer stationary quasi-separatrix layers (QSLs). Such outer QSLs correspond to the border of the filament channel and determine the final positions of flare ribbons, which can be used to predict the size and the lifetime of a flare before it occurs. In addition, the side views of the synthesized EUV and white-light images exhibit typical three-part structures of CMEs, where the bright leading front is roughly cospatial with the nonwave component of the EUV wave, reinforcing the use of the magnetic stretching model for the slow component of EUV waves.
Magnetic reconnection is a key mechanism involved in solar eruptions and is also a prime possibility to heat the low corona to millions of degrees. Here, we present ultra-high-resolution extreme ultraviolet observations of persistent null-point reconnection in the corona at a scale of about 390 km over one hour observations of the Extreme-Ultraviolet Imager on board Solar Orbiter spacecraft. The observations show formation of a null-point configuration above a minor positive polarity embedded within a region of dominant negative polarity near a sunspot. The gentle phase of the persistent null-point reconnection is evidenced by sustained point-like high-temperature plasma (about 10 MK) near the null-point and constant outflow blobs not only along the outer spine but also along the fan surface. The blobs appear at a higher frequency than previously observed with an average velocity of about 80 km s−1 and life-times of about 40 s. The null-point reconnection also occurs explosively but only for 4 minutes, its coupling with a mini-filament eruption generates a spiral jet. These results suggest that magnetic reconnection, at previously unresolved scales, proceeds continually in a gentle and/or explosive way to persistently transfer mass and energy to the overlying corona.
Context. A filament channel (FC), a plasma volume where the magnetic field is primarily aligned with the polarity inversion line, is believed to be the pre-eruptive configuration of coronal mass ejections. Nevertheless, evidence for how the FC is formed is still elusive. Aims. In this paper, we present a detailed study of the build-up of a FC in order to understand its formation mechanism. Methods. The New Vacuum Solar Telescope (NVST) of the Yunnan Observatory and the Optical and Near-infrared Solar Eruption Tracer (ONSET) of Nanjing University, as well as the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), are used to study the growth process of the FC. Furthermore, we reconstruct the nonlinear force-free field (NLFFF) of the active region using the regularized Biot-Savart laws (RBSL) and the magnetofrictional method to reveal the three-dimensional (3D) magnetic field properties of the FC. Results. We find that partial filament materials are quickly transferred to longer magnetic field lines formed by small-scale magnetic reconnection, as evidenced by dot-like Hα and extreme ultraviolet (EUV) brightenings and subsequent bidirectional outflow jets, as well as untwisting motions. The Hα and EUV bursts appear repeatedly at the same location and are closely associated with flux cancelation, which occurs between two small-scale opposite polarities and is driven by shearing and converging motions. The 3D NLFFF model reveals that the reconnection takes place in a hyperbolic flux tube that is located above the flux-cancelation site and below the FC. Conclusions. The FC is gradually built up toward a twisted flux rope via a series of small-scale reconnection events that occur intermittently prior to the eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.