Analytical electron microscopy revealed the structure and growth of hard coating Cr(Al)N/SiOx nanocomposite films prepared in a differential pumping cosputtering (DPCS) system, which has two chambers to sputter different materials and a rotating substrate holder. The substrate holder was heated at 250 °C and rotated at a speed as low as 1 rpm. In order to promote the adhesion between the substrate and composite film, transition layers were deposited on a (001) Si substrate by sputtering from the CrAl target with an Ar flow and a mixture flow of Ar and N2 (Ar/N2) gases, subsequently, prior to the composite film deposition. Then, the Cr(Al)N/SiOx nanocomposite film was fabricated on the transition layers by cosputtering from the CrAl target with the Ar/N2 gas flow and from the SiO2 target with the Ar gas flow. The film had a multilayer structure of ∼1.6 nm thick crystallite layers of Cr(Al)N similar to NaCl-type CrN and ∼1 nm thick amorphous silicon oxide layers. The structure of the transition layers was also elucidated. These results can help with the fabrication of new hard nanocomposite films by DPCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.