Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H 2 O 2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H 2 O 2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response.The frequent environmental changes to which a plant is subject can lead to physiological alterations and disruption of normal metabolism. In particular, the energetic reactions that take place in chloroplasts, peroxisomes, and mitochondria are susceptible to dysfunction, which results in production of excessive levels of reactive oxygen species (ROS). In fact, many common abiotic stress conditions encountered in agriculture, including temperature extremes, drought, soil salinity, and air pollution, are known to include an oxidative stress component (Gill and Tuteja, 2010). Cellular levels of ROS are carefully maintained at relatively low levels through a wide range of scavenging and detoxification mechanisms. However, if the balance between ROS production and removal is shifted too far toward production (e.g. under stress conditions), cellular damage can occur as a result of oxidation of macromolecules such as lipids, proteins, and nucleic acids (Mittler, 2002;Gill and Tuteja, 2010). Accumulation of ROS beyond some threshold triggers cell death as a response. Therefore, ROS are thought to serve as indicators of oxidative stress within a cell but may also
Cytokinin is an indispensable phytohormone responsible for physiological processes ranging from root development to leaf senescence. The term "cytokinin" refers to several dozen adenine-derived compounds occurring naturally in plants. Cytokinins (CKs) can be divided into various classes and forms; base forms are generally considered to be active while highly abundant cytokinin-N-glucosides (CKNGs), composed of a CK base irreversibly conjugated to a glucose molecule, are considered inactive. However, results from early CK studies suggest CKNGs do not always lack activity despite the perpetuation over several decades in the literature that they are inactive. Here we show that exogenous application of trans-Zeatin-N-glucosides (tZNGs, a specific class of CKNGs) to Arabidopsis results in CK response comparable to the application of an active CK base. These results are most apparent in senescence assays where both a CK base (tZ) and tZNGs (tZ7G, tZ9G) delay senescence in cotyledons. Further experiments involving root growth and shoot regeneration revealed tZNGs do not always have the same effects as tZ, and have largely distinct effects on the transcriptome and proteome. These data are in contrast to previous reports of CKNGs being inactive and raise questions about the function of these compounds as well as their mechanism of action.
Cytokinins are well‐known to be involved in processes responsible for plant growth and development. More recently, these hormones have begun to be associated with stress responses as well. However, it is unclear how changes in cytokinin biosynthesis, signaling, or transport relate to stress effects. This study examines in parallel how two different stresses, salt, and oxidative stress, affect changes in both cytokinin levels and whole plant transcriptome response. Solanum lycopersicum seedlings were given a short‐term (6 hr) exposure to either salt (150 mM NaCl) or oxidative (20 mM H2O2) stress and then examined to determine both changes in cytokinin levels and transcriptome. LC‐MS/MS was used to determine the levels of 22 different types of cytokinins in tomato plants including precursors, active, transported, and conjugated forms. When examining cytokinin levels we found that salt treatment caused an increase in both active and inactive cytokinin levels and oxidative stress caused a decrease in these levels. RNA‐sequencing analyses of these same stress‐treated tissues revealed 6,643 significantly differentially expressed genes (DEGs). Although many DEGs are similar between the two stresses, approximately one‐third of the DEGs in each treatment were unique to that stress. Several cytokinin‐related genes were among the DEGs. Examination of photosystem II efficiency revealed that cytokinins affect physiological response to stress in tomato, further validating the changes in cytokinin levels seen in planta.
Cytokinins (CKs) are a class of phytohormones affecting many aspects of plant growth and development. In the complex process of CK homeostasis in plants, N-glucosylation represents one of the essential metabolic pathways. Its products, CK N7- and N9-glucosides, have been largely overlooked in the past as irreversible and inactive CK products lacking any relevant physiological impact. In this work, we report a widespread distribution of CK N-glucosides across the plant kingdom proceeding from evolutionary older to younger plants with different proportions between N7- and N9-glucosides in the total CK pool. We show dramatic changes in their profiles as well as in expression levels of the UGT76C1 and UGT76C2 genes during Arabidopsis ontogenesis. We also demonstrate specific physiological effects of CK N-glucosides in CK bioassays including their antisenescent activities, inhibitory effects on root development, and activation of the CK signaling pathway visualized by the CK-responsive YFP reporter line, TCSv2::3XVENUS. Last but not least, we present the considerable impact of CK N7- and N9-glucosides on the expression of CK-related genes in maize and their stimulatory effects on CK oxidase/dehydrogenase activity in oats. Our findings revise the apparent irreversibility and inactivity of CK N7- and N9-glucosides and indicate their involvement in CK evolution while suggesting their unique function(s) in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.