Several non-cuprates layered transition-metal oxides exhibit clear evidence for stripe ordering of charges and magnetic moments. Therefore, stripe order should be considered as the typical consequence of doping a Mott insulator, but only in cuprates stripe order or fluctuating stripes coexist with metallic properties. A linear relationship between the charge concentration and the incommensurate structural and magnetic modulations can be considered as the finger print of stripe ordering with localized degrees of freedom. In nickelates and in cobaltates with K 2 NiF 4 structure, doping suppresses the nearest-neighbor antiferromagnetism and induces stripe order. The higher amount of doping needed to induce stripe phases in these non-cuprates series can be attributed to reduced charge mobility. Also manganites exhibit clear evidence for stripe phases with further enhanced complexity, because orbital degrees of freedom are involved. Orbital ordering is the key element of stripe order in manganites since it is associated with the strongest structural distortion and with the perfectly fulfilled relation between doping and incommensurability. Magnetic excitations in insulating stripe phases exhibit strong similarity with those in the cuprates, but only for sufficiently short magnetic correlation lengths reflecting well-defined magnetic stripes that are only loosely coupled.
Overdoped La0.42Sr1.58MnO4 exhibits a complex ordering of charges, orbitals, and spins. Neutron diffraction experiments reveal three incommensurate and one commensurate order parameters to be tightly coupled. The position and the shape of the distinct superstructure scattering as well as higher-order signals are inconsistent with a harmonic charge and spin-density-wave picture but point to a stripe arrangement in which ferromagnetic zigzag chains are disrupted by excess Mn(4+).
We report inelastic neutron scattering experiments on single crystals of Nd1−xSrxMnO3 with x=0.5 and x=0.49. The spin-wave dispersion in the charge, orbital, and spin ordered state in Nd0.5Sr0.5MnO3 exhibits a strongly anisotropic stiffness. The sign of the anisotropy is characteristic for the site-centered model for charge and orbital ordering in half-doped manganites. Within this model, linear spin-wave theory yields a perfect description of the experimental dispersion. In the ferromagnetic metallic state of Nd1−xSrxMnO3 with x=0.49 and x=0.50 magnetic excitations exhibit nearly the same magnon dispersion. High intense signals near the zone-boundary over a wide energy level overlap with a sharp spin-wave dispersion which can be described with a Heisenberg model including nearest-neighbor interactions.
The incommensurate stripelike magnetic ordering in two single-layered manganites, Nd0.33Sr1.67MnO4 and Pr0.33Ca1.67MnO4, is found to exhibit an hourglasslike excitation spectrum very similar to that seen in various cuprates superconductors, but only for sufficiently short correlation lengths. Several characteristic features of an hourglass dispersion can be identified: enhancement of intensity at the merging of the incommensurate branches, rotation of the intensity maxima with higher energy transfer, and suppression of the outward-dispersing branches at low energy. The correlation length of the magnetic ordering and the large ratio of intra- to interstripe couplings are identified as the decisive parameters causing the hourglass shape of the spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.